Joy
Abstract:Recent advances in diffusion models have made significant progress in digital human generation. However, most existing models still struggle to maintain 3D consistency, temporal coherence, and motion accuracy. A key reason for these shortcomings is the limited representation ability of commonly used control signals(e.g., landmarks, depth maps, etc.). In addition, the lack of diversity in identity and pose variations in public datasets further hinders progress in this area. In this paper, we analyze the shortcomings of current control signals and introduce a novel control signal representation that is optimizable, dense, expressive, and 3D consistent. Our method embeds a learnable neural Gaussian onto a parametric head surface, which greatly enhances the consistency and expressiveness of diffusion-based head models. Regarding the dataset, we synthesize a large-scale dataset with multiple poses and identities. In addition, we use real/synthetic labels to effectively distinguish real and synthetic data, minimizing the impact of imperfections in synthetic data on the generated head images. Extensive experiments show that our model outperforms existing methods in terms of realism, expressiveness, and 3D consistency. Our code, synthetic datasets, and pre-trained models will be released in our project page: https://ustc3dv.github.io/Learn2Control/
Abstract:The advancement of visual language models (VLMs) has enhanced mobile device operations, allowing simulated human-like actions to address user requirements. Current VLM-based mobile operating assistants can be structured into three levels: task, subtask, and action. The subtask level, linking high-level goals with low-level executable actions, is crucial for task completion but faces two challenges: ineffective subtasks that lower-level agent cannot execute and inefficient subtasks that fail to contribute to the completion of the higher-level task. These challenges stem from VLM's lack of experience in decomposing subtasks within GUI scenarios in multi-agent architecture. To address these, we propose a new mobile assistant architecture with constrained high-frequency o}ptimized planning (CHOP). Our approach overcomes the VLM's deficiency in GUI scenarios planning by using human-planned subtasks as the basis vector. We evaluate our architecture in both English and Chinese contexts across 20 Apps, demonstrating significant improvements in both effectiveness and efficiency. Our dataset and code is available at https://github.com/Yuqi-Zhou/CHOP
Abstract:Recent years have seen a notable increase in the frequency and intensity of extreme weather events. With a rising number of power outages caused by these events, accurate prediction of power line outages is essential for safe and reliable operation of power grids. The Bayesian network is a probabilistic model that is very effective for predicting line outages under weather-related uncertainties. However, most existing studies in this area offer general risk assessments, but fall short of providing specific outage probabilities. In this work, we introduce a novel approach for predicting transmission line outage probabilities using a Bayesian network combined with Peter-Clark (PC) structural learning. Our approach not only enables precise outage probability calculations, but also demonstrates better scalability and robust performance, even with limited data. Case studies using data from BPA and NOAA show the effectiveness of this approach, while comparisons with several existing methods further highlight its advantages.
Abstract:Text embeddings enable various applications, but their performance deteriorates on longer texts. In this paper, we find that the performance degradation is due to a phenomenon called Length Collapse, where longer text embeddings collapse into a narrow space. This collapse results in a distributional inconsistency between embeddings of different text lengths, ultimately hurting the performance of downstream tasks. Theoretically, by considering the self-attention mechanism inherently functions as a low-pass filter, we prove that long sequences increase the attenuation rate of the low-pass filter effect of the self-attention mechanism. With layers going deeper, excessive low-pass filtering causes the token signals to retain only their Direct-Current (DC) component, which means the input token feature maps will collapse into a narrow space, especially in long texts. Based on the above analysis, we propose to mitigate the undesirable length collapse limitation by introducing a temperature in softmax(), which achieves a higher low-filter attenuation rate. The tuning-free method, called TempScale, can be plugged into multiple transformer-based embedding models. Empirically, we demonstrate that TempScale can improve existing embedding models, especially on long text inputs, bringing up to 0.53% performance gains on 40 datasets from Massive Text Embedding Benchmark (MTEB) and 0.82% performance gains on 4 datasets from LongEmbed, which specifically focuses on long context retrieval.
Abstract:Timely and effective load shedding in power systems is critical for maintaining supply-demand balance and preventing cascading blackouts. To eliminate load shedding bias against specific regions in the system, optimization-based methods are uniquely positioned to help balance between economical and equity considerations. However, the resulting optimization problem involves complex constraints, which can be time-consuming to solve and thus cannot meet the real-time requirements of load shedding. To tackle this challenge, in this paper we present an efficient machine learning algorithm to enable millisecond-level computation for the optimization-based load shedding problem. Numerical studies on both a 3-bus toy example and a realistic RTS-GMLC system have demonstrated the validity and efficiency of the proposed algorithm for delivering equitable and real-time load shedding decisions.
Abstract:Recently, researchers have uncovered that neural retrieval models prefer AI-generated content (AIGC), called source bias. Compared to active search behavior, recommendation represents another important means of information acquisition, where users are more prone to source bias. Furthermore, delving into the recommendation scenario, as AIGC becomes integrated within the feedback loop involving users, data, and the recommender system, it progressively contaminates the candidate items, the user interaction history, and ultimately, the data used to train the recommendation models. How and to what extent the source bias affects the neural recommendation models within feedback loop remains unknown. In this study, we extend the investigation of source bias into the realm of recommender systems, specifically examining its impact across different phases of the feedback loop. We conceptualize the progression of AIGC integration into the recommendation content ecosystem in three distinct phases-HGC dominate, HGC-AIGC coexist, and AIGC dominance-each representing past, present, and future states, respectively. Through extensive experiments across three datasets from diverse domains, we demonstrate the prevalence of source bias and reveal a potential digital echo chamber with source bias amplification throughout the feedback loop. This trend risks creating a recommender ecosystem with limited information source, such as AIGC, being disproportionately recommended. To counteract this bias and prevent its escalation in the feedback loop, we introduce a black-box debiasing method that maintains model impartiality towards both HGC and AIGC. Our experimental results validate the effectiveness of the proposed debiasing method, confirming its potential to disrupt the feedback loop.
Abstract:The proliferation of Large Language Models (LLMs) has led to an influx of AI-generated content (AIGC) on the internet, transforming the corpus of Information Retrieval (IR) systems from solely human-written to a coexistence with LLM-generated content. The impact of this surge in AIGC on IR systems remains an open question, with the primary challenge being the lack of a dedicated benchmark for researchers. In this paper, we introduce Cocktail, a comprehensive benchmark tailored for evaluating IR models in this mixed-sourced data landscape of the LLM era. Cocktail consists of 16 diverse datasets with mixed human-written and LLM-generated corpora across various text retrieval tasks and domains. Additionally, to avoid the potential bias from previously included dataset information in LLMs, we also introduce an up-to-date dataset, named NQ-UTD, with queries derived from recent events. Through conducting over 1,000 experiments to assess state-of-the-art retrieval models against the benchmarked datasets in Cocktail, we uncover a clear trade-off between ranking performance and source bias in neural retrieval models, highlighting the necessity for a balanced approach in designing future IR systems. We hope Cocktail can serve as a foundational resource for IR research in the LLM era, with all data and code publicly available at \url{https://github.com/KID-22/Cocktail}.
Abstract:Prompt and effective corrective actions in response to unexpected contingencies are crucial for improving power system resilience and preventing cascading blackouts. The optimal load shedding (OLS) accounting for network limits has the potential to address the diverse system-wide impacts of contingency scenarios as compared to traditional local schemes. However, due to the fast cascading propagation of initial contingencies, real-time OLS solutions are challenging to attain in large systems with high computation and communication needs. In this paper, we propose a decentralized design that leverages offline training of a neural network (NN) model for individual load centers to autonomously construct the OLS solutions from locally available measurements. Our learning-for-OLS approach can greatly reduce the computation and communication needs during online emergency responses, thus preventing the cascading propagation of contingencies for enhanced power grid resilience. Numerical studies on both the IEEE 118-bus system and a synthetic Texas 2000-bus system have demonstrated the efficiency and effectiveness of our scalable OLS learning design for timely power system emergency operations.
Abstract:Accurate and quick identification of high-impedance faults is critical for the reliable operation of distribution systems. Unlike other faults in power grids, HIFs are very difficult to detect by conventional overcurrent relays due to the low fault current. Although HIFs can be affected by various factors, the voltage current characteristics can substantially imply how the system responds to the disturbance and thus provides opportunities to effectively localize HIFs. In this work, we propose a data-driven approach for the identification of HIF events. To tackle the nonlinearity of the voltage current trajectory, first, we formulate optimization problems to approximate the trajectory with piecewise functions. Then we collect the function features of all segments as inputs and use the support vector machine approach to efficiently identify HIFs at different locations. Numerical studies on the IEEE 123-node test feeder demonstrate the validity and accuracy of the proposed approach for real-time HIF identification.
Abstract:Recently, the emergence of large language models (LLMs) has revolutionized the paradigm of information retrieval (IR) applications, especially in web search. With their remarkable capabilities in generating human-like texts, LLMs have created enormous texts on the Internet. As a result, IR systems in the LLMs era are facing a new challenge: the indexed documents now are not only written by human beings but also automatically generated by the LLMs. How these LLM-generated documents influence the IR systems is a pressing and still unexplored question. In this work, we conduct a quantitative evaluation of different IR models in scenarios where both human-written and LLM-generated texts are involved. Surprisingly, our findings indicate that neural retrieval models tend to rank LLM-generated documents higher.We refer to this category of biases in neural retrieval models towards the LLM-generated text as the \textbf{source bias}. Moreover, we discover that this bias is not confined to the first-stage neural retrievers, but extends to the second-stage neural re-rankers. Then, we provide an in-depth analysis from the perspective of text compression and observe that neural models can better understand the semantic information of LLM-generated text, which is further substantiated by our theoretical analysis.We also discuss the potential server concerns stemming from the observed source bias and hope our findings can serve as a critical wake-up call to the IR community and beyond. To facilitate future explorations of IR in the LLM era, the constructed two new benchmarks and codes will later be available at \url{https://github.com/KID-22/LLM4IR-Bias}.