Abstract:Automated crop mapping through Satellite Image Time Series (SITS) has emerged as a crucial avenue for agricultural monitoring and management. However, due to the low resolution and unclear parcel boundaries, annotating pixel-level masks is exceptionally complex and time-consuming in SITS. This paper embraces the weakly supervised paradigm (i.e., only image-level categories available) to liberate the crop mapping task from the exhaustive annotation burden. The unique characteristics of SITS give rise to several challenges in weakly supervised learning: (1) noise perturbation from spatially neighboring regions, and (2) erroneous semantic bias from anomalous temporal periods. To address the above difficulties, we propose a novel method, termed exploring space-time perceptive clues (Exact). First, we introduce a set of spatial clues to explicitly capture the representative patterns of different crops from the most class-relative regions. Besides, we leverage the temporal-to-class interaction of the model to emphasize the contributions of pivotal clips, thereby enhancing the model perception for crop regions. Build upon the space-time perceptive clues, we derive the clue-based CAMs to effectively supervise the SITS segmentation network. Our method demonstrates impressive performance on various SITS benchmarks. Remarkably, the segmentation network trained on Exact-generated masks achieves 95% of its fully supervised performance, showing the bright promise of weakly supervised paradigm in crop mapping scenario. Our code will be publicly available.
Abstract:Reconstructing high-fidelity, animatable 3D head avatars from effortlessly captured monocular videos is a pivotal yet formidable challenge. Although significant progress has been made in rendering performance and manipulation capabilities, notable challenges remain, including incomplete reconstruction and inefficient Gaussian representation. To address these challenges, we introduce FATE, a novel method for reconstructing an editable full-head avatar from a single monocular video. FATE integrates a sampling-based densification strategy to ensure optimal positional distribution of points, improving rendering efficiency. A neural baking technique is introduced to convert discrete Gaussian representations into continuous attribute maps, facilitating intuitive appearance editing. Furthermore, we propose a universal completion framework to recover non-frontal appearance, culminating in a 360$^\circ$-renderable 3D head avatar. FATE outperforms previous approaches in both qualitative and quantitative evaluations, achieving state-of-the-art performance. To the best of our knowledge, FATE is the first animatable and 360$^\circ$ full-head monocular reconstruction method for a 3D head avatar. The code will be publicly released upon publication.
Abstract:Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks. However, the enormous size of LLMs poses significant challenges in terms of computational complexity and resource requirements. Low-Rank Adaptation (LoRA) has emerged as a promising solution. However, there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum. In this work, we propose eXtreme Gradient Boosting LoRA (XGBLoRA), a novel framework that bridges this gap by leveraging the power of ensemble learning. Inspired by gradient boosting, XGBLoRA iteratively learns and merges a sequence of LoRA adaptations to refine model predictions. It achieves better performance than the standard LoRA, while enjoying the computational efficiency of rank-1 adaptations. We provide theoretical analysis to show the convergence and optimality of our approach, and conduct extensive experiments on a range of natural language processing tasks. The results demonstrate that XGBLoRA consistently outperforms standard LoRA and achieves performance comparable to full fine-tuning with significantly fewer trainable parameters. This work advances parameter-efficient fine-tuning for LLMs, and offers a promising solution for adapting LLMs to downstream tasks while optimizing performance and efficiency.
Abstract:Large Language Models (LLMs) have been widely used in code completion, and researchers are focusing on scaling up LLMs to improve their accuracy. However, larger LLMs will increase the response time of code completion and decrease the developers' productivity. In this paper, we propose a lightweight and effective LLM for code completion named aiXcoder-7B. Compared to existing LLMs, aiXcoder-7B achieves higher code completion accuracy while having smaller scales (i.e., 7 billion parameters). We attribute the superiority of aiXcoder-7B to three key factors: (1) Multi-objective training. We employ three training objectives, one of which is our proposed Structured Fill-In-the-Middle (SFIM). SFIM considers the syntax structures in code and effectively improves the performance of LLMs for code. (2) Diverse data sampling strategies. They consider inter-file relationships and enhance the capability of LLMs in understanding cross-file contexts. (3) Extensive high-quality data. We establish a rigorous data collection pipeline and consume a total of 1.2 trillion unique tokens for training aiXcoder-7B. This vast volume of data enables aiXcoder-7B to learn a broad distribution of code. We evaluate aiXcoder-7B in five popular code completion benchmarks and a new benchmark collected by this paper. The results show that aiXcoder-7B outperforms the latest six LLMs with similar sizes and even surpasses four larger LLMs (e.g., StarCoder2-15B and CodeLlama-34B), positioning aiXcoder-7B as a lightweight and effective LLM for academia and industry. Finally, we summarize three valuable insights for helping practitioners train the next generations of LLMs for code. aiXcoder-7B has been open-souced and gained significant attention. As of the submission date, aiXcoder-7B has received 2,193 GitHub Stars.
Abstract:Recent advances in latent diffusion-based generative models for portrait image animation, such as Hallo, have achieved impressive results in short-duration video synthesis. In this paper, we present updates to Hallo, introducing several design enhancements to extend its capabilities. First, we extend the method to produce long-duration videos. To address substantial challenges such as appearance drift and temporal artifacts, we investigate augmentation strategies within the image space of conditional motion frames. Specifically, we introduce a patch-drop technique augmented with Gaussian noise to enhance visual consistency and temporal coherence over long duration. Second, we achieve 4K resolution portrait video generation. To accomplish this, we implement vector quantization of latent codes and apply temporal alignment techniques to maintain coherence across the temporal dimension. By integrating a high-quality decoder, we realize visual synthesis at 4K resolution. Third, we incorporate adjustable semantic textual labels for portrait expressions as conditional inputs. This extends beyond traditional audio cues to improve controllability and increase the diversity of the generated content. To the best of our knowledge, Hallo2, proposed in this paper, is the first method to achieve 4K resolution and generate hour-long, audio-driven portrait image animations enhanced with textual prompts. We have conducted extensive experiments to evaluate our method on publicly available datasets, including HDTF, CelebV, and our introduced "Wild" dataset. The experimental results demonstrate that our approach achieves state-of-the-art performance in long-duration portrait video animation, successfully generating rich and controllable content at 4K resolution for duration extending up to tens of minutes. Project page https://fudan-generative-vision.github.io/hallo2
Abstract:Equivalent Representations (ERs) of code are textual representations that preserve the same semantics as the code itself, e.g., natural language comments and pseudocode. ERs play a critical role in software development and maintenance. However, how to automatically generate ERs of code remains an open challenge. In this paper, we propose a self-reflection approach to generating ERs of code. It enables two Large Language Models (LLMs) to work mutually and produce an ER through a reflection process. Depending on whether constraints on ERs are applied, our approach generates ERs in both open and constrained settings. We conduct a empirical study to generate ERs in two settings and obtain eight findings. (1) Generating ERs in the open setting. In the open setting, we allow LLMs to represent code without any constraints, analyzing the resulting ERs and uncovering five key findings. These findings shed light on how LLMs comprehend syntactic structures, APIs, and numerical computations in code. (2) Generating ERs in the constrained setting. In the constrained setting, we impose constraints on ERs, such as natural language comments, pseudocode, and flowcharts. This allows our approach to address a range of software engineering tasks. Based on our experiments, we have three findings demonstrating that our approach can effectively generate ERs that adhere to specific constraints, thus supporting various software engineering tasks. (3) Future directions. We also discuss potential future research directions, such as deriving intermediate languages for code generation, exploring LLM-friendly requirement descriptions, and further supporting software engineering tasks. We believe that this paper will spark discussions in research communities and inspire many follow-up studies.
Abstract:Creating 3D head avatars is a significant yet challenging task for many applicated scenarios. Previous studies have set out to learn 3D human head generative models using massive 2D image data. Although these models are highly generalizable for human appearance, their result models are not 360$^\circ$-renderable, and the predicted 3D geometry is unreliable. Therefore, such results cannot be used in VR, game modeling, and other scenarios that require 360$^\circ$-renderable 3D head models. An intuitive idea is that 3D head models with limited amount but high 3D accuracy are more reliable training data for a high-quality 3D generative model. In this vein, we delve into how to learn a native generative model for 360$^\circ$ full head from a limited 3D head dataset. Specifically, three major problems are studied: 1) how to effectively utilize various representations for generating the 360$^\circ$-renderable human head; 2) how to disentangle the appearance, shape, and motion of human faces to generate a 3D head model that can be edited by appearance and driven by motion; 3) and how to extend the generalization capability of the generative model to support downstream tasks. Comprehensive experiments are conducted to verify the effectiveness of the proposed model. We hope the proposed models and artist-designed dataset can inspire future research on learning native generative 3D head models from limited 3D datasets.
Abstract:AI agents are increasingly autonomous in their interactions with human users and tools, leading to increased interactional safety risks. We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions. HAICOSYSTEM features a modular sandbox environment that simulates multi-turn interactions between human users and AI agents, where the AI agents are equipped with a variety of tools (e.g., patient management platforms) to navigate diverse scenarios (e.g., a user attempting to access other patients' profiles). To examine the safety of AI agents in these interactions, we develop a comprehensive multi-dimensional evaluation framework that uses metrics covering operational, content-related, societal, and legal risks. Through running 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education), we demonstrate that HAICOSYSTEM can emulate realistic user-AI interactions and complex tool use by AI agents. Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50\% cases, with models generally showing higher risks when interacting with simulated malicious users. Our findings highlight the ongoing challenge of building agents that can safely navigate complex interactions, particularly when faced with malicious users. To foster the AI agent safety ecosystem, we release a code platform that allows practitioners to create custom scenarios, simulate interactions, and evaluate the safety and performance of their agents.
Abstract:The growing prevalence of inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis. To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component. The recurrent neural network (RNN) model is used to match the recursive structure in predicting the key dynamical states of a component from its terminal bus voltage and set-point input. To deal with the fast transients especially due to IBRs, we develop a Stable Integral (SI-)RNN to mimic high-order integral methods that can enhance the stability and accuracy for the dynamic learning task. We demonstrate that the proposed SI-RNN model not only can successfully predict the component's dynamic behaviors, but also offers the possibility of efficiently computing the dynamic sensitivity relative to a set-point change. These capabilities have been numerically validated based on full-order Electromagnetic Transient (EMT) simulations on a small test system with both SGs and IBRs, particularly for predicting the dynamics of grid-forming inverters.
Abstract:In actual scenarios, whether manually or automatically annotated, label noise is inevitably generated in the training data, which can affect the effectiveness of deep CNN models. The popular solutions require data cleaning or designing additional optimizations to punish the data with mislabeled data, thereby enhancing the robustness of models. However, these methods come at the cost of weakening or even losing some data during the training process. As we know, content is the inherent attribute of an image that does not change with changes in annotations. In this study, we propose a general granular-ball computing (GBC) module that can be embedded into a CNN model, where the classifier finally predicts the label of granular-ball ($gb$) samples instead of each individual samples. Specifically, considering the classification task: (1) in forward process, we split the input samples as $gb$ samples at feature-level, each of which can correspond to multiple samples with varying numbers and share one single label; (2) during the backpropagation process, we modify the gradient allocation strategy of the GBC module to enable it to propagate normally; and (3) we develop an experience replay policy to ensure the stability of the training process. Experiments demonstrate that the proposed method can improve the robustness of CNN models with no additional data or optimization.