Jiangnan University, Wuxi, China
Abstract:Recent commercial systems such as Suno demonstrate strong capabilities in long-form song generation, while academic research remains largely non-reproducible due to the lack of publicly available training data, hindering fair comparison and progress. To this end, we release a fully open-source system for long-form song generation with fine-grained style conditioning, including a licensed synthetic dataset, training and evaluation pipelines, and Muse, an easy-to-deploy song generation model. The dataset consists of 116k fully licensed synthetic songs with automatically generated lyrics and style descriptions paired with audio synthesized by SunoV5. We train Muse via single-stage supervised finetuning of a Qwen-based language model extended with discrete audio tokens using MuCodec, without task-specific losses, auxiliary objectives, or additional architectural components. Our evaluations find that although Muse is trained with a modest data scale and model size, it achieves competitive performance on phoneme error rate, text--music style similarity, and audio aesthetic quality, while enabling controllable segment-level generation across different musical structures. All data, model weights, and training and evaluation pipelines will be publicly released, paving the way for continued progress in controllable long-form song generation research. The project repository is available at https://github.com/yuhui1038/Muse.
Abstract:Recent studies suggest that Visual Language Models (VLMs) hold great potential for tasks such as automated medical diagnosis. However, processing complex three-dimensional (3D) multimodal medical images poses significant challenges - specifically, the effective integration of complementary information and the occasional oversight of subtle yet critical pathological features. To address these issues, we present a novel two-stage fusion framework termed Hilbert-VLM. This framework leverages the HilbertMed-SAM module for precise lesion segmentation, with the generated multimodal enhanced prompts then guiding the VLM toward accurate disease classification. Our key innovation lies in the systematic redesign of the Segment Anything Model 2 (SAM2) architecture: we incorporate Hilbert space-filling curves into the scanning mechanism of the Mamba State Space Model (SSM) to maximize the preservation of spatial locality in 3D data, a property critical for medical image analysis. We also introduce a novel Hilbert-Mamba Cross-Attention (HMCA) mechanism and a scale-aware decoder to capture fine-grained details. Meanwhile, the prompt enhancement module unifies segmentation masks and their corresponding textual attributes into an information-dense prompt to support VLM inference. Extensive experiments were conducted to validate the effectiveness of the Hilbert-VLM model. On the BraTS2021 segmentation benchmark, it achieves a Dice score of 82.35 percent, with a diagnostic classification accuracy (ACC) of 78.85 percent. These results demonstrate that the proposed model offers substantial potential to improve the accuracy and reliability of medical VLM-based analysis.
Abstract:This paper studies the training-testing discrepancy (a.k.a. exposure bias) problem for improving the diffusion models. During training, the input of a prediction network at one training timestep is the corresponding ground-truth noisy data that is an interpolation of the noise and the data, and during testing, the input is the generated noisy data. We present a novel training approach, named MixFlow, for improving the performance. Our approach is motivated by the Slow Flow phenomenon: the ground-truth interpolation that is the nearest to the generated noisy data at a given sampling timestep is observed to correspond to a higher-noise timestep (termed slowed timestep), i.e., the corresponding ground-truth timestep is slower than the sampling timestep. MixFlow leverages the interpolations at the slowed timesteps, named slowed interpolation mixture, for post-training the prediction network for each training timestep. Experiments over class-conditional image generation (including SiT, REPA, and RAE) and text-to-image generation validate the effectiveness of our approach. Our approach MixFlow over the RAE models achieve strong generation results on ImageNet: 1.43 FID (without guidance) and 1.10 (with guidance) at 256 x 256, and 1.55 FID (without guidance) and 1.10 (with guidance) at 512 x 512.




Abstract:Large language models (LLMs) for code generation are becoming integral to modern software development, but their real-world prevalence and security impact remain poorly understood. We present the first large-scale empirical study of AI-generated code (AIGCode) in the wild. We build a high-precision detection pipeline and a representative benchmark to distinguish AIGCode from human-written code, and apply them to (i) development commits from the top 1,000 GitHub repositories (2022-2025) and (ii) 7,000+ recent CVE-linked code changes. This lets us label commits, files, and functions along a human/AI axis and trace how AIGCode moves through projects and vulnerability life cycles. Our measurements show three ecological patterns. First, AIGCode is already a substantial fraction of new code, but adoption is structured: AI concentrates in glue code, tests, refactoring, documentation, and other boilerplate, while core logic and security-critical configurations remain mostly human-written. Second, adoption has security consequences: some CWE families are overrepresented in AI-tagged code, and near-identical insecure templates recur across unrelated projects, suggesting "AI-induced vulnerabilities" propagated by shared models rather than shared maintainers. Third, in human-AI edit chains, AI introduces high-throughput changes while humans act as security gatekeepers; when review is shallow, AI-introduced defects persist longer, remain exposed on network-accessible surfaces, and spread to more files and repositories. We will open-source the complete dataset and release analysis artifacts and fine-grained documentation of our methodology and findings.




Abstract:In the domain of software security testing, Directed Grey-Box Fuzzing (DGF) has garnered widespread attention for its efficient target localization and excellent detection performance. However, existing approaches measure only the physical distance between seed execution paths and target locations, overlooking logical relationships among code segments. This omission can yield redundant or misleading guidance in complex binaries, weakening DGF's real-world effectiveness. To address this, we introduce \textbf{attention distance}, a novel metric that leverages a large language model's contextual analysis to compute attention scores between code elements and reveal their intrinsic connections. Under the same AFLGo configuration -- without altering any fuzzing components other than the distance metric -- replacing physical distances with attention distances across 38 real vulnerability reproduction experiments delivers a \textbf{3.43$\times$} average increase in testing efficiency over the traditional method. Compared to state-of-the-art directed fuzzers DAFL and WindRanger, our approach achieves \textbf{2.89$\times$} and \textbf{7.13$\times$} improvements, respectively. To further validate the generalizability of attention distance, we integrate it into DAFL and WindRanger, where it also consistently enhances their original performance. All related code and datasets are publicly available at https://github.com/TheBinKing/Attention\_Distance.git.




Abstract:Unsupervised industrial anomaly detection requires accurately identifying defects without labeled data. Traditional autoencoder-based methods often struggle with incomplete anomaly suppression and loss of fine details, as their single-pass decoding fails to effectively handle anomalies with varying severity and scale. We propose a recursive architecture for autoencoder (RcAE), which performs reconstruction iteratively to progressively suppress anomalies while refining normal structures. Unlike traditional single-pass models, this recursive design naturally produces a sequence of reconstructions, progressively exposing suppressed abnormal patterns. To leverage this reconstruction dynamics, we introduce a Cross Recursion Detection (CRD) module that tracks inconsistencies across recursion steps, enhancing detection of both subtle and large-scale anomalies. Additionally, we incorporate a Detail Preservation Network (DPN) to recover high-frequency textures typically lost during reconstruction. Extensive experiments demonstrate that our method significantly outperforms existing non-diffusion methods, and achieves performance on par with recent diffusion models with only 10% of their parameters and offering substantially faster inference. These results highlight the practicality and efficiency of our approach for real-world applications.
Abstract:This paper presents a reinforcement learning framework that incorporates a Contextual Reward Machine for task-oriented grasping. The Contextual Reward Machine reduces task complexity by decomposing grasping tasks into manageable sub-tasks. Each sub-task is associated with a stage-specific context, including a reward function, an action space, and a state abstraction function. This contextual information enables efficient intra-stage guidance and improves learning efficiency by reducing the state-action space and guiding exploration within clearly defined boundaries. In addition, transition rewards are introduced to encourage or penalize transitions between stages which guides the model toward desirable stage sequences and further accelerates convergence. When integrated with the Proximal Policy Optimization algorithm, the proposed method achieved a 95% success rate across 1,000 simulated grasping tasks encompassing diverse objects, affordances, and grasp topologies. It outperformed the state-of-the-art methods in both learning speed and success rate. The approach was transferred to a real robot, where it achieved a success rate of 83.3% in 60 grasping tasks over six affordances. These experimental results demonstrate superior accuracy, data efficiency, and learning efficiency. They underscore the model's potential to advance task-oriented grasping in both simulated and real-world settings.
Abstract:Sensitive information leakage in code repositories has emerged as a critical security challenge. Traditional detection methods that rely on regular expressions, fingerprint features, and high-entropy calculations often suffer from high false-positive rates. This not only reduces detection efficiency but also significantly increases the manual screening burden on developers. Recent advances in large language models (LLMs) and multi-agent collaborative architectures have demonstrated remarkable potential for tackling complex tasks, offering a novel technological perspective for sensitive information detection. In response to these challenges, we propose Argus, a multi-agent collaborative framework for detecting sensitive information. Argus employs a three-tier detection mechanism that integrates key content, file context, and project reference relationships to effectively reduce false positives and enhance overall detection accuracy. To comprehensively evaluate Argus in real-world repository environments, we developed two new benchmarks, one to assess genuine leak detection capabilities and another to evaluate false-positive filtering performance. Experimental results show that Argus achieves up to 94.86% accuracy in leak detection, with a precision of 96.36%, recall of 94.64%, and an F1 score of 0.955. Moreover, the analysis of 97 real repositories incurred a total cost of only 2.2$. All code implementations and related datasets are publicly available at https://github.com/TheBinKing/Argus-Guard for further research and application.
Abstract:Due to excessive memory overhead, most Multimodal Large Language Models (MLLMs) can only process videos of limited frames. In this paper, we propose an effective and efficient paradigm to remedy this shortcoming, termed One-shot video-Clip based Retrieval AuGmentation (OneClip-RAG). Compared with existing video RAG methods, OneClip-RAG makes full use of the merits of video clips for augmented video understanding in terms of both knowledge integrity and semantic coherence. Besides, it is also equipped with a novel query-guided video chunking algorithm that can unify clip chunking and cross-modal retrieval in one processing step, avoiding redundant computations. To improve instruction following, we further propose a new dataset called SynLongVideo and design a progressive training regime for OneClip-RAG. OneClip-RAG is plugged into five recent MLLMs and validated on a set of long-video benchmarks. Experimental results not only show the obvious performance gains by OneClip-RAG over MLLMs, e.g., boosting InternLV2 8B and Qwen2-VL 7B to the level of GPT-4o on MLVU, but also show its superior efficiency in handling long videos. e.g., enabling LLaVA-Video understand up to an hour of videos in less than 2.2 minutes on a single 4090 GPU.
Abstract:3D understanding has drawn significant attention recently, leveraging Vision-Language Models (VLMs) to enable multi-modal reasoning between point cloud and text data. Current 3D-VLMs directly embed the 3D point clouds into 3D tokens, following large 2D-VLMs with powerful reasoning capabilities. However, this framework has a great computational cost limiting its application, where we identify that the bottleneck lies in processing all 3D tokens in the Large Language Model (LLM) part. This raises the question: how can we reduce the computational overhead introduced by 3D tokens while preserving the integrity of their essential information? To address this question, we introduce Hierarchical Compensatory Compression (HCC-3D) to efficiently compress 3D tokens while maintaining critical detail retention. Specifically, we first propose a global structure compression (GSC), in which we design global queries to compress all 3D tokens into a few key tokens while keeping overall structural information. Then, to compensate for the information loss in GSC, we further propose an adaptive detail mining (ADM) module that selectively recompresses salient but under-attended features through complementary scoring. Extensive experiments demonstrate that HCC-3D not only achieves extreme compression ratios (approximately 98%) compared to previous 3D-VLMs, but also achieves new state-of-the-art performance, showing the great improvements on both efficiency and performance.