Abstract:Driven by the critical challenges in biomanufacturing, including high complexity and high uncertainty, we propose a comprehensive and computationally efficient sensitivity analysis framework for general nonlinear policy-augmented knowledge graphical (pKG) hybrid models that characterize the risk- and science-based understandings of underlying stochastic decision process mechanisms. The criticality of each input (i.e., random factors, policy parameters, and model parameters) is measured by applying Shapley value (SV) sensitivity analysis to pKG (called SV-pKG), accounting for process causal interdependences. To quickly assess the SV for heavily instrumented bioprocesses, we approximate their dynamics with linear Gaussian pKG models and improve the SV estimation efficiency by utilizing the linear Gaussian properties. In addition, we propose an effective permutation sampling method with TFWW transformation and variance reduction techniques, namely the quasi-Monte Carlo and antithetic sampling methods, to further improve the sampling efficiency and estimation accuracy of SV for both general nonlinear and linear Gaussian pKG models. Our proposed framework can benefit efficient interpretation and support stable optimal process control in biomanufacturing.
Abstract:An approach to supervised learning in spiking neural networks is presented using a gradient-free method combined with spike-timing-dependent plasticity for image recognition. The proposed network architecture is scalable to multiple layers, enabling the development of more complex and deeper SNN models. The effectiveness of this method is demonstrated by its application to the MNIST dataset, showing good learning accuracy. The proposed method provides a robust and efficient alternative to the backpropagation-based method in supervised learning.
Abstract:Despite their proficiency in math tasks, the mechanisms underlying LLMs' mathematical reasoning abilities remain a subject of debate. Recent studies suggest that chain-of-thought (CoT) prompts can bolster mathematical reasoning by encouraging LLMs to employ human-like logical reasoning (System 2), enabling them to excel on the Cognitive Reflection Test (CRT). To assess whether LLMs genuinely possess System 2-like logical reasoning, we introduced targeted modifications to CRT problems. Our findings reveal that, despite the use of CoT prompts, mainstream LLMs, including the latest o1-preview model, continue to exhibit a significant error rate. Further analysis indicates that they predominantly rely on System 1-like intuitive reasoning and pattern matching derived from training data, rather than demonstrating mastery of mathematical thinking. This discovery challenges the prevailing notion that LLMs possess genuine logical reasoning abilities and that CoT can enhance them. Consequently, this work may temper overly optimistic projections regarding LLMs' advancement toward artificial general intelligence.
Abstract:Motivated by the pressing challenges in the digital twin development for biomanufacturing process, we introduce an adjoint sensitivity analysis (SA) approach to expedite the learning of mechanistic model parameters. In this paper, we consider enzymatic stochastic reaction networks representing a multi-scale bioprocess mechanistic model that allows us to integrate disparate data from diverse production processes and leverage the information from existing macro-kinetic and genome-scale models. To support forward prediction and backward reasoning, we develop a convergent adjoint SA algorithm studying how the perturbations of model parameters and inputs (e.g., initial state) propagate through enzymatic reaction networks and impact on output trajectory predictions. This SA can provide a sample efficient and interpretable way to assess the sensitivities between inputs and outputs accounting for their causal dependencies. Our empirical study underscores the resilience of these sensitivities and illuminates a deeper comprehension of the regulatory mechanisms behind bioprocess through sensitivities.
Abstract:Biomanufacturing innovation relies on an efficient design of experiments (DoE) to optimize processes and product quality. Traditional DoE methods, ignoring the underlying bioprocessing mechanisms, often suffer from a lack of interpretability and sample efficiency. This limitation motivates us to create a new optimal learning approach that can guide a sequential DoEs for digital twin model calibration. In this study, we consider a multi-scale mechanistic model for cell culture process, also known as Biological Systems-of-Systems (Bio-SoS), as our digital twin. This model with modular design, composed of sub-models, allows us to integrate data across various production processes. To calibrate the Bio-SoS digital twin, we evaluate the mean squared error of model prediction and develop a computational approach to quantify the impact of parameter estimation error of individual sub-models on the prediction accuracy of digital twin, which can guide sample-efficient and interpretable DoEs.
Abstract:To support mechanism online learning and facilitate digital twin development for biomanufacturing processes, this paper develops an efficient Bayesian inference approach for partially observed enzymatic stochastic reaction network (SRN), a fundamental building block of multi-scale bioprocess mechanistic model. To tackle the critical challenges brought by the nonlinear stochastic differential equations (SDEs)-based mechanistic model with partially observed state and having measurement error, an interpretable Bayesian updating linear noise approximation (LNA) metamodel, incorporating the structure information of the mechanistic model, is proposed to approximate the likelihood of observations. Then, an efficient posterior sampling approach is developed by utilizing the gradients of the derived likelihood to speed up the convergence of MCMC. The empirical study demonstrates that the proposed approach has a promising performance.
Abstract:Large Language Models (LLMs) have gradually become the gateway for people to acquire new knowledge. However, attackers can break the model's security protection ("jail") to access restricted information, which is called "jailbreaking." Previous studies have shown the weakness of current LLMs when confronted with such jailbreaking attacks. Nevertheless, comprehension of the intrinsic decision-making mechanism within the LLMs upon receipt of jailbreak prompts is noticeably lacking. Our research provides a psychological explanation of the jailbreak prompts. Drawing on cognitive consistency theory, we argue that the key to jailbreak is guiding the LLM to achieve cognitive coordination in an erroneous direction. Further, we propose an automatic black-box jailbreaking method based on the Foot-in-the-Door (FITD) technique. This method progressively induces the model to answer harmful questions via multi-step incremental prompts. We instantiated a prototype system to evaluate the jailbreaking effectiveness on 8 advanced LLMs, yielding an average success rate of 83.9%. This study builds a psychological perspective on the explanatory insights into the intrinsic decision-making logic of LLMs.
Abstract:Video moment retrieval (MR) and highlight detection (HD) based on natural language queries are two highly related tasks, which aim to obtain relevant moments within videos and highlight scores of each video clip. Recently, several methods have been devoted to building DETR-based networks to solve both MR and HD jointly. These methods simply add two separate task heads after multi-modal feature extraction and feature interaction, achieving good performance. Nevertheless, these approaches underutilize the reciprocal relationship between two tasks. In this paper, we propose a task-reciprocal transformer based on DETR (TR-DETR) that focuses on exploring the inherent reciprocity between MR and HD. Specifically, a local-global multi-modal alignment module is first built to align features from diverse modalities into a shared latent space. Subsequently, a visual feature refinement is designed to eliminate query-irrelevant information from visual features for modal interaction. Finally, a task cooperation module is constructed to refine the retrieval pipeline and the highlight score prediction process by utilizing the reciprocity between MR and HD. Comprehensive experiments on QVHighlights, Charades-STA and TVSum datasets demonstrate that TR-DETR outperforms existing state-of-the-art methods. Codes are available at \url{https://github.com/mingyao1120/TR-DETR}.
Abstract:Acquiring contact patterns between hands and nonrigid objects is a common concern in the vision and robotics community. However, existing learning-based methods focus more on contact with rigid ones from monocular images. When adopting them for nonrigid contact, a major problem is that the existing contact representation is restricted by the geometry of the object. Consequently, contact neighborhoods are stored in an unordered manner and contact features are difficult to align with image cues. At the core of our approach lies a novel hand-object contact representation called RUPs (Region Unwrapping Profiles), which unwrap the roughly estimated hand-object surfaces as multiple high-resolution 2D regional profiles. The region grouping strategy is consistent with the hand kinematic bone division because they are the primitive initiators for a composite contact pattern. Based on this representation, our Regional Unwrapping Transformer (RUFormer) learns the correlation priors across regions from monocular inputs and predicts corresponding contact and deformed transformations. Our experiments demonstrate that the proposed framework can robustly estimate the deformed degrees and deformed transformations, which makes it suitable for both nonrigid and rigid contact.
Abstract:Reconstructing interacting hands from monocular images is indispensable in AR/VR applications. Most existing solutions rely on the accurate localization of each skeleton joint. However, these methods tend to be unreliable due to the severe occlusion and confusing similarity among adjacent hand parts. This also defies human perception because humans can quickly imitate an interaction pattern without localizing all joints. Our key idea is to first construct a two-hand interaction prior and recast the interaction reconstruction task as the conditional sampling from the prior. To expand more interaction states, a large-scale multimodal dataset with physical plausibility is proposed. Then a VAE is trained to further condense these interaction patterns as latent codes in a prior distribution. When looking for image cues that contribute to interaction prior sampling, we propose the interaction adjacency heatmap (IAH). Compared with a joint-wise heatmap for localization, IAH assigns denser visible features to those invisible joints. Compared with an all-in-one visible heatmap, it provides more fine-grained local interaction information in each interaction region. Finally, the correlations between the extracted features and corresponding interaction codes are linked by the ViT module. Comprehensive evaluations on benchmark datasets have verified the effectiveness of this framework. The code and dataset are publicly available at https://github.com/binghui-z/InterPrior_pytorch