Abstract:Despite their proficiency in math tasks, the mechanisms underlying LLMs' mathematical reasoning abilities remain a subject of debate. Recent studies suggest that chain-of-thought (CoT) prompts can bolster mathematical reasoning by encouraging LLMs to employ human-like logical reasoning (System 2), enabling them to excel on the Cognitive Reflection Test (CRT). To assess whether LLMs genuinely possess System 2-like logical reasoning, we introduced targeted modifications to CRT problems. Our findings reveal that, despite the use of CoT prompts, mainstream LLMs, including the latest o1-preview model, continue to exhibit a significant error rate. Further analysis indicates that they predominantly rely on System 1-like intuitive reasoning and pattern matching derived from training data, rather than demonstrating mastery of mathematical thinking. This discovery challenges the prevailing notion that LLMs possess genuine logical reasoning abilities and that CoT can enhance them. Consequently, this work may temper overly optimistic projections regarding LLMs' advancement toward artificial general intelligence.
Abstract:Large Language Models (LLMs) have gradually become the gateway for people to acquire new knowledge. However, attackers can break the model's security protection ("jail") to access restricted information, which is called "jailbreaking." Previous studies have shown the weakness of current LLMs when confronted with such jailbreaking attacks. Nevertheless, comprehension of the intrinsic decision-making mechanism within the LLMs upon receipt of jailbreak prompts is noticeably lacking. Our research provides a psychological explanation of the jailbreak prompts. Drawing on cognitive consistency theory, we argue that the key to jailbreak is guiding the LLM to achieve cognitive coordination in an erroneous direction. Further, we propose an automatic black-box jailbreaking method based on the Foot-in-the-Door (FITD) technique. This method progressively induces the model to answer harmful questions via multi-step incremental prompts. We instantiated a prototype system to evaluate the jailbreaking effectiveness on 8 advanced LLMs, yielding an average success rate of 83.9%. This study builds a psychological perspective on the explanatory insights into the intrinsic decision-making logic of LLMs.