Abstract:Reasoning before action and imagining potential outcomes (i.e., world models) are essential for embodied agents operating in complex open-world environments. Yet, prior work either incorporates only one of these abilities in an end-to-end agent or integrates multiple specialized models into an agent system, limiting the learning efficiency and generalization of the policy. Thus, this paper makes the first attempt to synergize Reasoning and Imagination in an end-to-end Generalist policy, termed RIG. To train RIG in an end-to-end manner, we construct a data pipeline that progressively integrates and enriches the content of imagination and reasoning in the trajectories collected from existing agents. The joint learning of reasoning and next image generation explicitly models the inherent correlation between reasoning, action, and dynamics of environments, and thus exhibits more than $17\times$ sample efficiency improvements and generalization in comparison with previous works. During inference, RIG first reasons about the next action, produces potential action, and then predicts the action outcomes, which offers the agent a chance to review and self-correct based on the imagination before taking real actions. Experimental results show that the synergy of reasoning and imagination not only improves the robustness, generalization, and interoperability of generalist policy but also enables test-time scaling to enhance overall performance.
Abstract:Multi-step spatial reasoning entails understanding and reasoning about spatial relationships across multiple sequential steps, which is crucial for tackling complex real-world applications, such as robotic manipulation, autonomous navigation, and automated assembly. To assess how well current Multimodal Large Language Models (MLLMs) have acquired this fundamental capability, we introduce \textbf{LEGO-Puzzles}, a scalable benchmark designed to evaluate both \textbf{spatial understanding} and \textbf{sequential reasoning} in MLLMs through LEGO-based tasks. LEGO-Puzzles consists of 1,100 carefully curated visual question-answering (VQA) samples spanning 11 distinct tasks, ranging from basic spatial understanding to complex multi-step reasoning. Based on LEGO-Puzzles, we conduct a comprehensive evaluation of state-of-the-art MLLMs and uncover significant limitations in their spatial reasoning capabilities: even the most powerful MLLMs can answer only about half of the test cases, whereas human participants achieve over 90\% accuracy. In addition to VQA tasks, we evaluate MLLMs' abilities to generate LEGO images following assembly illustrations. Our experiments show that only Gemini-2.0-Flash and GPT-4o exhibit a limited ability to follow these instructions, while other MLLMs either replicate the input image or generate completely irrelevant outputs. Overall, LEGO-Puzzles exposes critical deficiencies in existing MLLMs' spatial understanding and sequential reasoning capabilities, and underscores the need for further advancements in multimodal spatial reasoning.
Abstract:LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
Abstract:This paper introduces DeepPsy-Agent, an innovative psychological support system that combines the three-stage helping theory in psychology with deep learning techniques. The system consists of two core components: (1) a multi-stage response-capable dialogue model (\textit{deeppsy-chat}), which enhances reasoning capabilities through stage-awareness and deep-thinking analysis to generate high-quality responses; and (2) a real-time stage transition detection model that identifies contextual shifts to guide the dialogue towards more effective intervention stages. Based on 30,000 real psychological hotline conversations, we employ AI-simulated dialogues and expert re-annotation strategies to construct a high-quality multi-turn dialogue dataset. Experimental results demonstrate that DeepPsy-Agent outperforms general-purpose large language models (LLMs) in key metrics such as problem exposure completeness, cognitive restructuring success rate, and action adoption rate. Ablation studies further validate the effectiveness of stage-awareness and deep-thinking modules, showing that stage information contributes 42.3\% to performance, while the deep-thinking module increases root-cause identification by 58.3\% and reduces ineffective suggestions by 72.1\%. This system addresses critical challenges in AI-based psychological support through dynamic dialogue management and deep reasoning, advancing intelligent mental health services.
Abstract:Creativity is a fundamental aspect of intelligence, involving the ability to generate novel and appropriate solutions across diverse contexts. While Large Language Models (LLMs) have been extensively evaluated for their creative capabilities, the assessment of Multimodal Large Language Models (MLLMs) in this domain remains largely unexplored. To address this gap, we introduce Creation-MMBench, a multimodal benchmark specifically designed to evaluate the creative capabilities of MLLMs in real-world, image-based tasks. The benchmark comprises 765 test cases spanning 51 fine-grained tasks. To ensure rigorous evaluation, we define instance-specific evaluation criteria for each test case, guiding the assessment of both general response quality and factual consistency with visual inputs. Experimental results reveal that current open-source MLLMs significantly underperform compared to proprietary models in creative tasks. Furthermore, our analysis demonstrates that visual fine-tuning can negatively impact the base LLM's creative abilities. Creation-MMBench provides valuable insights for advancing MLLM creativity and establishes a foundation for future improvements in multimodal generative intelligence. Full data and evaluation code is released on https://github.com/open-compass/Creation-MMBench.
Abstract:Large Language Models (LLMs) have made significant progress in various fields. However, challenges remain in Multi-Disciplinary Team (MDT) medical consultations. Current research enhances reasoning through role assignment, task decomposition, and accumulation of medical experience. Multi-role collaboration in MDT consultations often results in excessively long dialogue histories. This increases the model's cognitive burden and degrades both efficiency and accuracy. Some methods only store treatment histories. They do not extract effective experience or reflect on errors. This limits knowledge generalization and system evolution. We propose a multi-agent MDT medical consultation framework based on LLMs to address these issues. Our framework uses consensus aggregation and a residual discussion structure for multi-round consultations. It also employs a Correct Answer Knowledge Base (CorrectKB) and a Chain-of-Thought Knowledge Base (ChainKB) to accumulate consultation experience. These mechanisms enable the framework to evolve and continually improve diagnosis rationality and accuracy. Experimental results on the MedQA and PubMedQA datasets demonstrate that our framework achieves accuracies of 90.1% and 83.9%, respectively, and that the constructed knowledge bases generalize effectively across test sets from both datasets.
Abstract:Large language models make remarkable progress in reasoning capabilities. Existing works focus mainly on deductive reasoning tasks (e.g., code and math), while another type of reasoning mode that better aligns with human learning, inductive reasoning, is not well studied. We attribute the reason to the fact that obtaining high-quality process supervision data is challenging for inductive reasoning. Towards this end, we novelly employ number sequences as the source of inductive reasoning data. We package sequences into algorithmic problems to find the general term of each sequence through a code solution. In this way, we can verify whether the code solution holds for any term in the current sequence, and inject case-based supervision signals by using code unit tests. We build a sequence synthetic data pipeline and form a training dataset CodeSeq. Experimental results show that the models tuned with CodeSeq improve on both code and comprehensive reasoning benchmarks.
Abstract:Large Language Models (LLMs) are vulnerable to jailbreak attacks, which use crafted prompts to elicit toxic responses. These attacks exploit LLMs' difficulty in dynamically detecting harmful intents during the generation process. Traditional safety alignment methods, often relying on the initial few generation steps, are ineffective due to limited computational budget. This paper proposes DEEPALIGN, a robust defense framework that fine-tunes LLMs to progressively detoxify generated content, significantly improving both the computational budget and effectiveness of mitigating harmful generation. Our approach uses a hybrid loss function operating on hidden states to directly improve LLMs' inherent awareness of toxity during generation. Furthermore, we redefine safe responses by generating semantically relevant answers to harmful queries, thereby increasing robustness against representation-mutation attacks. Evaluations across multiple LLMs demonstrate state-of-the-art defense performance against six different attack types, reducing Attack Success Rates by up to two orders of magnitude compared to previous state-of-the-art defense while preserving utility. This work advances LLM safety by addressing limitations of conventional alignment through dynamic, context-aware mitigation.
Abstract:With the emergence of Multimodal Large Language Models (MLLMs), hundreds of benchmarks have been developed to ensure the reliability of MLLMs in downstream tasks. However, the evaluation mechanism itself may not be reliable. For developers of MLLMs, questions remain about which benchmark to use and whether the test results meet their requirements. Therefore, we propose a critical principle of Information Density, which examines how much insight a benchmark can provide for the development of MLLMs. We characterize it from four key dimensions: (1) Fallacy, (2) Difficulty, (3) Redundancy, (4) Diversity. Through a comprehensive analysis of more than 10,000 samples, we measured the information density of 19 MLLM benchmarks. Experiments show that using the latest benchmarks in testing can provide more insight compared to previous ones, but there is still room for improvement in their information density. We hope this principle can promote the development and application of future MLLM benchmarks. Project page: https://github.com/lcysyzxdxc/bench4bench
Abstract:Recent research applying text-to-image (T2I) diffusion models to real-world super-resolution (SR) has achieved remarkable success. However, fundamental misalignments between T2I and SR targets result in a dilemma between inference speed and detail fidelity. Specifically, T2I tasks prioritize multi-step inversion to synthesize coherent outputs aligned with textual prompts and shrink the latent space to reduce generating complexity. Contrariwise, SR tasks preserve most information from low-resolution input while solely restoring high-frequency details, thus necessitating sufficient latent space and fewer inference steps. To bridge the gap, we present a one-step diffusion model for generative detail restoration, GenDR, distilled from a tailored diffusion model with larger latent space. In detail, we train a new SD2.1-VAE16 (0.9B) via representation alignment to expand latent space without enlarging the model size. Regarding step-distillation, we propose consistent score identity distillation (CiD) that incorporates SR task-specific loss into score distillation to leverage more SR priors and align the training target. Furthermore, we extend CiD with adversarial learning and representation alignment (CiDA) to enhance perceptual quality and accelerate training. We also polish the pipeline to achieve a more efficient inference. Experimental results demonstrate that GenDR achieves state-of-the-art performance in both quantitative metrics and visual fidelity.