Abstract:Bayesian inference often faces a trade-off between computational speed and sampling accuracy. We propose an adaptive workflow that integrates rapid amortized inference with gold-standard MCMC techniques to achieve both speed and accuracy when performing inference on many observed datasets. Our approach uses principled diagnostics to guide the choice of inference method for each dataset, moving along the Pareto front from fast amortized sampling to slower but guaranteed-accurate MCMC when necessary. By reusing computations across steps, our workflow creates synergies between amortized and MCMC-based inference. We demonstrate the effectiveness of this integrated approach on a generalized extreme value task with 1000 observed data sets, showing 90x time efficiency gains while maintaining high posterior quality.
Abstract:Digital note-taking is gaining popularity, offering a durable, editable, and easily indexable way of storing notes in the vectorized form, known as digital ink. However, a substantial gap remains between this way of note-taking and traditional pen-and-paper note-taking, a practice still favored by a vast majority. Our work, InkSight, aims to bridge the gap by empowering physical note-takers to effortlessly convert their work (offline handwriting) to digital ink (online handwriting), a process we refer to as Derendering. Prior research on the topic has focused on the geometric properties of images, resulting in limited generalization beyond their training domains. Our approach combines reading and writing priors, allowing training a model in the absence of large amounts of paired samples, which are difficult to obtain. To our knowledge, this is the first work that effectively derenders handwritten text in arbitrary photos with diverse visual characteristics and backgrounds. Furthermore, it generalizes beyond its training domain into simple sketches. Our human evaluation reveals that 87% of the samples produced by our model on the challenging HierText dataset are considered as a valid tracing of the input image and 67% look like a pen trajectory traced by a human. Interactive visualizations of 100 word-level model outputs for each of the three public datasets are available in our Hugging Face space: https://huggingface.co/spaces/Derendering/Model-Output-Playground. Model release is in progress.
Abstract:PyVBMC is a Python implementation of the Variational Bayesian Monte Carlo (VBMC) algorithm for posterior and model inference for black-box computational models (Acerbi, 2018, 2020). VBMC is an approximate inference method designed for efficient parameter estimation and model assessment when model evaluations are mildly-to-very expensive (e.g., a second or more) and/or noisy. Specifically, VBMC computes: - a flexible (non-Gaussian) approximate posterior distribution of the model parameters, from which statistics and posterior samples can be easily extracted; - an approximation of the model evidence or marginal likelihood, a metric used for Bayesian model selection. PyVBMC can be applied to any computational or statistical model with up to roughly 10-15 continuous parameters, with the only requirement that the user can provide a Python function that computes the target log likelihood of the model, or an approximation thereof (e.g., an estimate of the likelihood obtained via simulation or Monte Carlo methods). PyVBMC is particularly effective when the model takes more than about a second per evaluation, with dramatic speed-ups of 1-2 orders of magnitude when compared to traditional approximate inference methods. Extensive benchmarks on both artificial test problems and a large number of real models from the computational sciences, particularly computational and cognitive neuroscience, show that VBMC generally - and often vastly - outperforms alternative methods for sample-efficient Bayesian inference, and is applicable to both exact and simulator-based models (Acerbi, 2018, 2019, 2020). PyVBMC brings this state-of-the-art inference algorithm to Python, along with an easy-to-use Pythonic interface for running the algorithm and manipulating and visualizing its results.
Abstract:We introduce Sparse Variational Bayesian Monte Carlo (SVBMC), a method for fast "post-process" Bayesian inference for models with black-box and potentially noisy likelihoods. SVBMC reuses all existing target density evaluations -- for example, from previous optimizations or partial Markov Chain Monte Carlo runs -- to build a sparse Gaussian process (GP) surrogate model of the log posterior density. Uncertain regions of the surrogate are then refined via active learning as needed. Our work builds on the Variational Bayesian Monte Carlo (VBMC) framework for sample-efficient inference, with several novel contributions. First, we make VBMC scalable to a large number of pre-existing evaluations via sparse GP regression, deriving novel Bayesian quadrature formulae and acquisition functions for active learning with sparse GPs. Second, we introduce noise shaping, a general technique to induce the sparse GP approximation to focus on high posterior density regions. Third, we prove theoretical results in support of the SVBMC refinement procedure. We validate our method on a variety of challenging synthetic scenarios and real-world applications. We find that SVBMC consistently builds good posterior approximations by post-processing of existing model evaluations from different sources, often requiring only a small number of additional density evaluations.
Abstract:Sharpness-Aware Minimization (SAM) and adaptive sharpness-aware minimization (ASAM) aim to improve the model generalization. And in this project, we proposed three experiments to valid their generalization from the sharpness aware perspective. And our experiments show that sharpness aware-based optimization techniques could help to provide models with strong generalization ability. Our experiments also show that ASAM could improve the generalization performance on un-normalized data, but further research is needed to confirm this.
Abstract:With the growing popularity of robotic surgery, education becomes increasingly important and urgently needed for the sake of patient safety. However, experienced surgeons have limited accessibility due to their busy clinical schedule or working in a distant city, thus can hardly provide sufficient education resources for novices. Remote mentoring, as an effective way, can help solve this problem, but traditional methods are limited to plain text, audio, or 2D video, which are not intuitive nor vivid. Augmented reality (AR), a thriving technique being widely used for various education scenarios, is promising to offer new possibilities of visual experience and interactive teaching. In this paper, we propose a novel AR-based robotic surgery remote mentoring system with efficient 3D scene visualization and natural 3D hand interaction. Using a head-mounted display (i.e., HoloLens), the mentor can remotely monitor the procedure streamed from the trainee's operation side. The mentor can also provide feedback directly with hand gestures, which is in-turn transmitted to the trainee and viewed in surgical console as guidance. We comprehensively validate the system on both real surgery stereo videos and ex-vivo scenarios of common robotic training tasks (i.e., peg-transfer and suturing). Promising results are demonstrated regarding the fidelity of streamed scene visualization, the accuracy of feedback with hand interaction, and the low-latency of each component in the entire remote mentoring system. This work showcases the feasibility of leveraging AR technology for reliable, flexible and low-cost solutions to robotic surgical education, and holds great potential for clinical applications.
Abstract:Pixel-level 2D object semantic understanding is an important topic in computer vision and could help machine deeply understand objects (e.g. functionality and affordance) in our daily life. However, most previous methods directly train on correspondences in 2D images, which is end-to-end but loses plenty of information in 3D spaces. In this paper, we propose a new method on predicting image corresponding semantics in 3D domain and then projecting them back onto 2D images to achieve pixel-level understanding. In order to obtain reliable 3D semantic labels that are absent in current image datasets, we build a large scale keypoint knowledge engine called KeypointNet, which contains 103,450 keypoints and 8,234 3D models from 16 object categories. Our method leverages the advantages in 3D vision and can explicitly reason about objects self-occlusion and visibility. We show that our method gives comparative and even superior results on standard semantic benchmarks.
Abstract:3D object detection has attracted much attention thanks to the advances in sensors and deep learning methods for point clouds. Current state-of-the-art methods like VoteNet regress direct offset towards object centers and box orientations with an additional Multi-Layer-Perceptron network. Both their offset and orientation predictions are not accurate due to the fundamental difficulty in rotation classification. In the work, we disentangle the direct offset into Local Canonical Coordinates (LCC), box scales and box orientations. Only LCC and box scales are regressed while box orientations are generated by a canonical voting scheme. Finally, a LCC-aware back-projection checking algorithm iteratively cuts out bounding boxes from the generated vote maps, with the elimination of false positives. Our model achieves state-of-the-art performance on challenging large-scale datasets of real point cloud scans: ScanNet, SceneNN with 11.4 and 5.3 mAP improvement respectively. Code is available on https://github.com/qq456cvb/CanonicalVoting.
Abstract:3D LiDAR semantic segmentation is a pivotal task that is widely involved in many applications, such as autonomous driving and robotics. Studies of 3D LiDAR semantic segmentation have recently achieved considerable development, especially in terms of deep learning strategies. However, these studies usually rely heavily on considerable fine annotated data, while point-wise 3D LiDAR datasets are extremely insufficient and expensive to label. The performance limitation caused by the lack of training data is called the data hungry effect. This survey aims to explore whether and how we are hungry for 3D LiDAR data for semantic segmentation. Thus, we first provide an organized review of existing 3D datasets and 3D semantic segmentation methods. Then, we provide an in-depth analysis of three representative datasets and several experiments to evaluate the data hungry effects in different aspects. Efforts to solve data hungry problems are summarized for both 3D LiDAR-focused methods and general-purpose methods. Finally, insightful topics are discussed for future research on data hungry problems and open questions.
Abstract:Visual semantic correspondence is an important topic in computer vision and could help machine understand objects in our daily life. However, most previous methods directly train on correspondences in 2D images, which is end-to-end but loses plenty of information in 3D spaces. In this paper, we propose a new method on predicting semantic correspondences by leveraging it to 3D domain and then project corresponding 3D models back to 2D domain, with their semantic labels. Our method leverages the advantages in 3D vision and can explicitly reason about objects self-occlusion and visibility. We show that our method gives comparative and even superior results on standard semantic benchmarks. We also conduct thorough and detailed experiments to analyze our network components. The code and experiments are publicly available at https://github.com/qq456cvb/SemanticTransfer.