Abstract:Recent advances in multimodal imaging acquisition techniques have allowed us to measure different aspects of brain structure and function. Multimodal fusion, such as linked independent component analysis (LICA), is popularly used to integrate complementary information. However, it has suffered from missing data, commonly occurring in neuroimaging data. Therefore, in this paper, we propose a Full Information LICA algorithm (FI-LICA) to handle the missing data problem during multimodal fusion under the LICA framework. Built upon complete cases, our method employs the principle of full information and utilizes all available information to recover the missing latent information. Our simulation experiments showed the ideal performance of FI-LICA compared to current practices. Further, we applied FI-LICA to multimodal data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, showcasing better performance in classifying current diagnosis and in predicting the AD transition of participants with mild cognitive impairment (MCI), thereby highlighting the practical utility of our proposed method.
Abstract:Prosthetic Joint Infection (PJI) is a prevalent and severe complication characterized by high diagnostic challenges. Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished, owing to the substantial noise in CT images and the disparity in data volume between CT images and text data. This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques. It effectively merges features from CT scan images and patients' numerical text data via a Unidirectional Selective Attention (USA) mechanism and a graph convolutional network (GCN)-based feature fusion network. We evaluated the proposed method on a custom-built multimodal PJI dataset, assessing its performance through ablation experiments and interpretability evaluations. Our method achieved an accuracy (ACC) of 91.4\% and an area under the curve (AUC) of 95.9\%, outperforming recent multimodal approaches by 2.9\% in ACC and 2.2\% in AUC, with a parameter count of only 68M. Notably, the interpretability results highlighted our model's strong focus and localization capabilities at lesion sites. This proposed method could provide clinicians with additional diagnostic tools to enhance accuracy and efficiency in clinical practice.
Abstract:Deformable image registration is widely utilized in medical image analysis, but most proposed methods fail in the situation of complex deformations. In this paper, we pre-sent a cascaded feature warping network to perform the coarse-to-fine registration. To achieve this, a shared-weights encoder network is adopted to generate the feature pyramids for the unaligned images. The feature warping registration module is then used to estimate the deformation field at each level. The coarse-to-fine manner is implemented by cascading the module from the bottom level to the top level. Furthermore, the multi-scale loss is also introduced to boost the registration performance. We employ two public benchmark datasets and conduct various experiments to evaluate our method. The results show that our method outperforms the state-of-the-art methods, which also demonstrates that the cascaded feature warping network can perform the coarse-to-fine registration effectively and efficiently.