Abstract:We introduce UniGraspTransformer, a universal Transformer-based network for dexterous robotic grasping that simplifies training while enhancing scalability and performance. Unlike prior methods such as UniDexGrasp++, which require complex, multi-step training pipelines, UniGraspTransformer follows a streamlined process: first, dedicated policy networks are trained for individual objects using reinforcement learning to generate successful grasp trajectories; then, these trajectories are distilled into a single, universal network. Our approach enables UniGraspTransformer to scale effectively, incorporating up to 12 self-attention blocks for handling thousands of objects with diverse poses. Additionally, it generalizes well to both idealized and real-world inputs, evaluated in state-based and vision-based settings. Notably, UniGraspTransformer generates a broader range of grasping poses for objects in various shapes and orientations, resulting in more diverse grasp strategies. Experimental results demonstrate significant improvements over state-of-the-art, UniDexGrasp++, across various object categories, achieving success rate gains of 3.5%, 7.7%, and 10.1% on seen objects, unseen objects within seen categories, and completely unseen objects, respectively, in the vision-based setting. Project page: https://dexhand.github.io/UniGraspTransformer.
Abstract:Recently, the enactment of "right to be forgotten" laws and regulations has imposed new privacy requirements on federated learning (FL). Researchers aim to remove the influence of certain data from the trained model without training from scratch through federated unlearning (FU). While current FU research has shown progress in enhancing unlearning efficiency, it often results in degraded model performance upon achieving the goal of data unlearning, necessitating additional steps to recover the performance of the unlearned model. Moreover, these approaches also suffer from many shortcomings such as high consumption of computational and storage resources. To this end, we propose a streamlined federated unlearning approach (SFU) aimed at effectively removing the influence of target data while preserving the model's performance on the retained data without degradation. We design a practical multi-teacher system that achieves both target data influence removal and model performance preservation by guiding the unlearned model through several distinct teacher models. SFU is both computationally and storage-efficient, highly flexible, and generalizable. We conducted extensive experiments on both image and text benchmark datasets. The results demonstrate that SFU significantly improves time and communication efficiency compared to the benchmark retraining method and significantly outperforms existing state-of-the-art (SOTA) methods. Additionally, we verified the effectiveness of SFU using the backdoor attack.
Abstract:Automated breast tumor segmentation on the basis of dynamic contrast-enhancement magnetic resonance imaging (DCE-MRI) has shown great promise in clinical practice, particularly for identifying the presence of breast disease. However, accurate segmentation of breast tumor is a challenging task, often necessitating the development of complex networks. To strike an optimal trade-off between computational costs and segmentation performance, we propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers. Specifically, the hybrid network consists of a encoder-decoder architecture by stacking convolution and decovolution layers. Effective 3D transformer layers are then implemented after the encoder subnetworks, to capture global dependencies between the bottleneck features. To improve the efficiency of hybrid network, two parallel encoder subnetworks are designed for the decoder and the transformer layers, respectively. To further enhance the discriminative capability of hybrid network, a prototype learning guided prediction module is proposed, where the category-specified prototypical features are calculated through on-line clustering. All learned prototypical features are finally combined with the features from decoder for tumor mask prediction. The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network achieves superior performance than the state-of-the-art (SOTA) methods, while maintaining balance between segmentation accuracy and computation cost. Moreover, we demonstrate that automatically generated tumor masks can be effectively applied to identify HER2-positive subtype from HER2-negative subtype with the similar accuracy to the analysis based on manual tumor segmentation. The source code is available at https://github.com/ZhouL-lab/PLHN.
Abstract:The versatility and adaptability of human grasping catalyze advancing dexterous robotic manipulation. While significant strides have been made in dexterous grasp generation, current research endeavors pivot towards optimizing object manipulation while ensuring functional integrity, emphasizing the synthesis of functional grasps following desired affordance instructions. This paper addresses the challenge of synthesizing functional grasps tailored to diverse dexterous robotic hands by proposing DexGrasp-Diffusion, an end-to-end modularized diffusion-based pipeline. DexGrasp-Diffusion integrates MultiHandDiffuser, a novel unified data-driven diffusion model for multi-dexterous hands grasp estimation, with DexDiscriminator, which employs a Physics Discriminator and a Functional Discriminator with open-vocabulary setting to filter physically plausible functional grasps based on object affordances. The experimental evaluation conducted on the MultiDex dataset provides substantiating evidence supporting the superior performance of MultiHandDiffuser over the baseline model in terms of success rate, grasp diversity, and collision depth. Moreover, we demonstrate the capacity of DexGrasp-Diffusion to reliably generate functional grasps for household objects aligned with specific affordance instructions.
Abstract:Identifying robust and accurate correspondences across images is a fundamental problem in computer vision that enables various downstream tasks. Recent semi-dense matching methods emphasize the effectiveness of fusing relevant cross-view information through Transformer. In this paper, we propose several improvements upon this paradigm. Firstly, we introduce affine-based local attention to model cross-view deformations. Secondly, we present selective fusion to merge local and global messages from cross attention. Apart from network structure, we also identify the importance of enforcing spatial smoothness in loss design, which has been omitted by previous works. Based on these augmentations, our network demonstrate strong matching capacity under different settings. The full version of our network achieves state-of-the-art performance among semi-dense matching methods at a similar cost to LoFTR, while the slim version reaches LoFTR baseline's performance with only 15% computation cost and 18% parameters.
Abstract:Accurately reconstructing the global ocean deoxygenation over a century is crucial for assessing and protecting marine ecosystem. Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities. Besides, due to the high-cost data collection, the historical observations are severely sparse, leading to big challenge for precise reconstruction. In this work, we propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023. Specifically, to address the heterogeneity across large temporal and spatial scales, we propose zoning-varying graph message-passing to capture the complex oceanographic correlations between missing values and sparse observations. Additionally, to further calibrate the uncertainty, we incorporate inductive bias from dissolved oxygen (DO) variations and chemical effects. Compared with in-situ DO observations, OxyGenerator significantly outperforms CMIP6 numerical simulations, reducing MAPE by 38.77%, demonstrating a promising potential to understand the "breathless ocean" in data-driven manner.
Abstract:Automatic evaluation metrics for generated texts play an important role in the NLG field, especially with the rapid growth of LLMs. However, existing metrics are often limited to specific scenarios, making it challenging to meet the evaluation requirements of expanding LLM applications. Therefore, there is a demand for new, flexible, and effective metrics. In this study, we introduce RepEval, the first metric leveraging the projection of LLM representations for evaluation. RepEval requires minimal sample pairs for training, and through simple prompt modifications, it can easily transition to various tasks. Results on ten datasets from three tasks demonstrate the high effectiveness of our method, which exhibits stronger correlations with human judgments compared to previous metrics, even outperforming GPT-4. Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
Abstract:In the realm of robotic grasping, achieving accurate and reliable interactions with the environment is a pivotal challenge. Traditional methods of grasp planning methods utilizing partial point clouds derived from depth image often suffer from reduced scene understanding due to occlusion, ultimately impeding their grasping accuracy. Furthermore, scene reconstruction methods have primarily relied upon static techniques, which are susceptible to environment change during manipulation process limits their efficacy in real-time grasping tasks. To address these limitations, this paper introduces a novel two-stage pipeline for dynamic scene reconstruction. In the first stage, our approach takes scene scanning as input to register each target object with mesh reconstruction and novel object pose tracking. In the second stage, pose tracking is still performed to provide object poses in real-time, enabling our approach to transform the reconstructed object point clouds back into the scene. Unlike conventional methodologies, which rely on static scene snapshots, our method continuously captures the evolving scene geometry, resulting in a comprehensive and up-to-date point cloud representation. By circumventing the constraints posed by occlusion, our method enhances the overall grasp planning process and empowers state-of-the-art 6-DoF robotic grasping algorithms to exhibit markedly improved accuracy.
Abstract:The majority of automatic metrics for evaluating NLG systems are reference-based. However, the challenge of collecting human annotation results in a lack of reliable references in numerous application scenarios. Despite recent advancements in reference-free metrics, it has not been well understood when and where they can be used as an alternative to reference-based metrics. In this study, by employing diverse analytical approaches, we comprehensively assess the performance of both metrics across a wide range of NLG tasks, encompassing eight datasets and eight evaluation models. Based on solid experiments, the results show that reference-free metrics exhibit a higher correlation with human judgment and greater sensitivity to deficiencies in language quality. However, their effectiveness varies across tasks and is influenced by the quality of candidate texts. Therefore, it's important to assess the performance of reference-free metrics before applying them to a new task, especially when inputs are in uncommon form or when the answer space is highly variable. Our study can provide insight into the appropriate application of automatic metrics and the impact of metric choice on evaluation performance.
Abstract:This paper tackles the challenges of self-supervised monocular depth estimation in indoor scenes caused by large rotation between frames and low texture. We ease the learning process by obtaining coarse camera poses from monocular sequences through multi-view geometry to deal with the former. However, we found that limited by the scale ambiguity across different scenes in the training dataset, a na\"ive introduction of geometric coarse poses cannot play a positive role in performance improvement, which is counter-intuitive. To address this problem, we propose to refine those poses during training through rotation and translation/scale optimization. To soften the effect of the low texture, we combine the global reasoning of vision transformers with an overfitting-aware, iterative self-distillation mechanism, providing more accurate depth guidance coming from the network itself. Experiments on NYUv2, ScanNet, 7scenes, and KITTI datasets support the effectiveness of each component in our framework, which sets a new state-of-the-art for indoor self-supervised monocular depth estimation, as well as outstanding generalization ability. Code and models are available at https://github.com/zxcqlf/GasMono