Abstract:Large Reconstruction Models (LRMs) have recently become a popular method for creating 3D foundational models. Training 3D reconstruction models with 2D visual data traditionally requires prior knowledge of camera poses for the training samples, a process that is both time-consuming and prone to errors. Consequently, 3D reconstruction training has been confined to either synthetic 3D datasets or small-scale datasets with annotated poses. In this study, we investigate the feasibility of 3D reconstruction using unposed video data of various objects. We introduce UVRM, a novel 3D reconstruction model capable of being trained and evaluated on monocular videos without requiring any information about the pose. UVRM uses a transformer network to implicitly aggregate video frames into a pose-invariant latent feature space, which is then decoded into a tri-plane 3D representation. To obviate the need for ground-truth pose annotations during training, UVRM employs a combination of the score distillation sampling (SDS) method and an analysis-by-synthesis approach, progressively synthesizing pseudo novel-views using a pre-trained diffusion model. We qualitatively and quantitatively evaluate UVRM's performance on the G-Objaverse and CO3D datasets without relying on pose information. Extensive experiments show that UVRM is capable of effectively and efficiently reconstructing a wide range of 3D objects from unposed videos.
Abstract:This paper introduces Interleaved Speech-Text Language Model (IST-LM) for streaming zero-shot Text-to-Speech (TTS). Unlike many previous approaches, IST-LM is directly trained on interleaved sequences of text and speech tokens with a fixed ratio, eliminating the need for additional efforts in duration prediction and grapheme-to-phoneme alignment. The ratio of text chunk size to speech chunk size is crucial for the performance of IST-LM. To explore this, we conducted a comprehensive series of statistical analyses on the training data and performed correlation analysis with the final performance, uncovering several key factors: 1) the distance between speech tokens and their corresponding text tokens, 2) the number of future text tokens accessible to each speech token, and 3) the frequency of speech tokens precedes their corresponding text tokens. Experimental results demonstrate how to achieve an optimal streaming TTS system without complicated engineering optimization, which has a limited gap with the non-streaming system. IST-LM is conceptually simple and empirically powerful, paving the way for streaming TTS with minimal overhead while largely maintaining performance, showcasing broad prospects coupled with real-time text stream from LLMs.
Abstract:Modeling and understanding the 3D world is crucial for various applications, from augmented reality to robotic navigation. Recent advancements based on 3D Gaussian Splatting have integrated semantic information from multi-view images into Gaussian primitives. However, these methods typically require costly per-scene optimization from dense calibrated images, limiting their practicality. In this paper, we consider the new task of generalizable 3D semantic field modeling from sparse, uncalibrated image pairs. Building upon the Splatt3R architecture, we introduce GSemSplat, a framework that learns open-vocabulary semantic representations linked to 3D Gaussians without the need for per-scene optimization, dense image collections or calibration. To ensure effective and reliable learning of semantic features in 3D space, we employ a dual-feature approach that leverages both region-specific and context-aware semantic features as supervision in the 2D space. This allows us to capitalize on their complementary strengths. Experimental results on the ScanNet++ dataset demonstrate the effectiveness and superiority of our approach compared to the traditional scene-specific method. We hope our work will inspire more research into generalizable 3D understanding.
Abstract:Recent advancements highlight the potential of end-to-end real-time spoken dialogue systems, showcasing their low latency and high quality. In this paper, we introduce SLAM-Omni, a timbre-controllable, end-to-end voice interaction system with single-stage training. SLAM-Omni achieves zero-shot timbre control by modeling spoken language with semantic tokens and decoupling speaker information to a vocoder. By predicting grouped speech semantic tokens at each step, our method significantly reduces the sequence length of audio tokens, accelerating both training and inference. Additionally, we propose historical text prompting to compress dialogue history, facilitating efficient multi-round interactions. Comprehensive evaluations reveal that SLAM-Omni outperforms prior models of similar scale, requiring only 15 hours of training on 4 GPUs with limited data. Notably, it is the first spoken dialogue system to achieve competitive performance with a single-stage training approach, eliminating the need for pre-training on TTS or ASR tasks. Further experiments validate its multilingual and multi-turn dialogue capabilities on larger datasets.
Abstract:The detection of anomalous tissue regions (ATRs) within affected tissues is crucial in clinical diagnosis and pathological studies. Conventional automated ATR detection methods, primarily based on histology images alone, falter in cases where ATRs and normal tissues have subtle visual differences. The recent spatial transcriptomics (ST) technology profiles gene expressions across tissue regions, offering a molecular perspective for detecting ATRs. However, there is a dearth of ATR detection methods that effectively harness complementary information from both histology images and ST. To address this gap, we propose MEATRD, a novel ATR detection method that integrates histology image and ST data. MEATRD is trained to reconstruct image patches and gene expression profiles of normal tissue spots (inliers) from their multimodal embeddings, followed by learning a one-class classification AD model based on latent multimodal reconstruction errors. This strategy harmonizes the strengths of reconstruction-based and one-class classification approaches. At the heart of MEATRD is an innovative masked graph dual-attention transformer (MGDAT) network, which not only facilitates cross-modality and cross-node information sharing but also addresses the model over-generalization issue commonly seen in reconstruction-based AD methods. Additionally, we demonstrate that modality-specific, task-relevant information is collated and condensed in multimodal bottleneck encoding generated in MGDAT, marking the first theoretical analysis of the informational properties of multimodal bottleneck encoding. Extensive evaluations across eight real ST datasets reveal MEATRD's superior performance in ATR detection, surpassing various state-of-the-art AD methods. Remarkably, MEATRD also proves adept at discerning ATRs that only show slight visual deviations from normal tissues.
Abstract:We introduce UniGraspTransformer, a universal Transformer-based network for dexterous robotic grasping that simplifies training while enhancing scalability and performance. Unlike prior methods such as UniDexGrasp++, which require complex, multi-step training pipelines, UniGraspTransformer follows a streamlined process: first, dedicated policy networks are trained for individual objects using reinforcement learning to generate successful grasp trajectories; then, these trajectories are distilled into a single, universal network. Our approach enables UniGraspTransformer to scale effectively, incorporating up to 12 self-attention blocks for handling thousands of objects with diverse poses. Additionally, it generalizes well to both idealized and real-world inputs, evaluated in state-based and vision-based settings. Notably, UniGraspTransformer generates a broader range of grasping poses for objects in various shapes and orientations, resulting in more diverse grasp strategies. Experimental results demonstrate significant improvements over state-of-the-art, UniDexGrasp++, across various object categories, achieving success rate gains of 3.5%, 7.7%, and 10.1% on seen objects, unseen objects within seen categories, and completely unseen objects, respectively, in the vision-based setting. Project page: https://dexhand.github.io/UniGraspTransformer.
Abstract:Molecular generation and molecular property prediction are both crucial for drug discovery, but they are often developed independently. Inspired by recent studies, which demonstrate that diffusion model, a prominent generative approach, can learn meaningful data representations that enhance predictive tasks, we explore the potential for developing a unified generative model in the molecular domain that effectively addresses both molecular generation and property prediction tasks. However, the integration of these tasks is challenging due to inherent inconsistencies, making simple multi-task learning ineffective. To address this, we propose UniGEM, the first unified model to successfully integrate molecular generation and property prediction, delivering superior performance in both tasks. Our key innovation lies in a novel two-phase generative process, where predictive tasks are activated in the later stages, after the molecular scaffold is formed. We further enhance task balance through innovative training strategies. Rigorous theoretical analysis and comprehensive experiments demonstrate our significant improvements in both tasks. The principles behind UniGEM hold promise for broader applications, including natural language processing and computer vision.
Abstract:Sound source localization (SSL) technology plays a crucial role in various application areas such as fault diagnosis, speech separation, and vibration noise reduction. Although beamforming algorithms are widely used in SSL, their resolution at low frequencies is limited. In recent years, deep learning-based SSL methods have significantly improved their accuracy by employing large microphone arrays and training case specific neural networks, however, this could lead to narrow applicability. To address these issues, this paper proposes a convolutional neural network-based method for high-precision SSL, which is adaptive in the lower frequency range under 1kHz with varying numbers of sound sources and microphone array-to-scanning grid distances. It takes the pressure distribution on a relatively small microphone array as input to the neural network, and employs customized training labels and loss function to train the model. Prediction accuracy, adaptability and robustness of the trained model under certain signal-to-noise ratio (SNR) are evaluated using randomly generated test datasets, and compared with classical beamforming algorithms, CLEAN-SC and DAMAS. Results of both planar and spatial sound source distributions show that the proposed neural network model significantly improves low-frequency localization accuracy, demonstrating its effectiveness and potential in SSL.
Abstract:Ultrawide-field fluorescein angiography (UWF-FA) facilitates diabetic retinopathy (DR) detection by providing a clear visualization of peripheral retinal lesions. However, the intravenous dye injection with potential risks hamper its application. We aim to acquire dye-free UWF-FA images from noninvasive UWF retinal imaging (UWF-RI) using generative artificial intelligence (GenAI) and evaluate its effectiveness in DR screening. A total of 18,321 UWF-FA images of different phases were registered with corresponding UWF-RI images and fed into a generative adversarial networks (GAN)-based model for training. The quality of generated UWF-FA images was evaluated through quantitative metrics and human evaluation. The DeepDRiD dataset was used to externally assess the contribution of generated UWF-FA images to DR classification, using area under the receiver operating characteristic curve (AUROC) as outcome metrics. The generated early, mid, and late phase UWF-FA images achieved high authenticity, with multi-scale similarity scores ranging from 0.70 to 0.91 and qualitative visual scores ranging from 1.64 to 1.98 (1=real UWF-FA quality). In fifty randomly selected images, 56% to 76% of the generated images were difficult to distinguish from real images in the Turing test. Moreover, adding these generated UWF-FA images for DR classification significantly increased the AUROC from 0.869 to 0.904 compared to the baseline model using UWF-RI images (P < .001). The model successfully generates realistic multi-frame UWF-FA images for enhancing DR stratification without intravenous dye injection.
Abstract:Low resource of parallel data is the key challenge of accent conversion(AC) problem in which both the pronunciation units and prosody pattern need to be converted. We propose a two-stage generative framework "convert-and-speak" in which the conversion is only operated on the semantic token level and the speech is synthesized conditioned on the converted semantic token with a speech generative model in target accent domain. The decoupling design enables the "speaking" module to use massive amount of target accent speech and relieves the parallel data required for the "conversion" module. Conversion with the bridge of semantic token also relieves the requirement for the data with text transcriptions and unlocks the usage of language pre-training technology to further efficiently reduce the need of parallel accent speech data. To reduce the complexity and latency of "speaking", a single-stage AR generative model is designed to achieve good quality as well as lower computation cost. Experiments on Indian-English to general American-English conversion show that the proposed framework achieves state-of-the-art performance in accent similarity, speech quality, and speaker maintenance with only 15 minutes of weakly parallel data which is not constrained to the same speaker. Extensive experimentation with diverse accent types suggests that this framework possesses a high degree of adaptability, making it readily scalable to accommodate other accents with low-resource data. Audio samples are available at https://www.microsoft.com/en-us/research/project/convert-and-speak-zero-shot-accent-conversion-with-minimumsupervision/.