Abstract:A novel algorithm for video lane detection is proposed in this paper. First, we extract a feature map for a current frame and detect a latent mask for obstacles occluding lanes. Then, we enhance the feature map by developing an occlusion-aware memory-based refinement (OMR) module. It takes the obstacle mask and feature map from the current frame, previous output, and memory information as input, and processes them recursively in a video. Moreover, we apply a novel data augmentation scheme for training the OMR module effectively. Experimental results show that the proposed algorithm outperforms existing techniques on video lane datasets. Our codes are available at https://github.com/dongkwonjin/OMR.
Abstract:A novel algorithm for face obfuscation, called Forbes, which aims to obfuscate facial appearance recognizable by humans but preserve the identity and attributes decipherable by machines, is proposed in this paper. Forbes first applies multiple obfuscating transformations with random parameters to an image to remove the identity information distinguishable by humans. Then, it optimizes the parameters to make the transformed image decipherable by machines based on the backpropagation refinement scheme. Finally, it renders an obfuscated image by applying the transformations with the optimized parameters. Experimental results on various datasets demonstrate that Forbes achieves both human indecipherability and machine decipherability excellently. The source codes are available at https://github.com/mcljtkim/Forbes.
Abstract:A novel algorithm, called semantic line combination detector (SLCD), to find an optimal combination of semantic lines is proposed in this paper. It processes all lines in each line combination at once to assess the overall harmony of the lines. First, we generate various line combinations from reliable lines. Second, we estimate the score of each line combination and determine the best one. Experimental results demonstrate that the proposed SLCD outperforms existing semantic line detectors on various datasets. Moreover, it is shown that SLCD can be applied effectively to three vision tasks of vanishing point detection, symmetry axis detection, and composition-based image retrieval. Our codes are available at https://github.com/Jinwon-Ko/SLCD.
Abstract:The main function of depth completion is to compensate for an insufficient and unpredictable number of sparse depth measurements of hardware sensors. However, existing research on depth completion assumes that the sparsity -- the number of points or LiDAR lines -- is fixed for training and testing. Hence, the completion performance drops severely when the number of sparse depths changes significantly. To address this issue, we propose the sparsity-adaptive depth refinement (SDR) framework, which refines monocular depth estimates using sparse depth points. For SDR, we propose the masked spatial propagation network (MSPN) to perform SDR with a varying number of sparse depths effectively by gradually propagating sparse depth information throughout the entire depth map. Experimental results demonstrate that MPSN achieves state-of-the-art performance on both SDR and conventional depth completion scenarios.
Abstract:For click-based interactive segmentation methods, reducing the number of clicks required to obtain a desired segmentation result is essential. Although recent click-based methods yield decent segmentation results, we observe that substantial amount of clicks are required to segment elongated regions. To reduce the amount of user-effort required, we propose using lines instead of clicks for such cases. In this paper, an interactive segmentation algorithm which adaptively adopts either clicks or lines as input is proposed. Experimental results demonstrate that using lines can generate better segmentation results than clicks for several cases.
Abstract:In recent interactive segmentation algorithms, previous probability maps are used as network input to help predictions in the current segmentation round. However, despite the utilization of previous masks, useful information contained in the probability maps is not well propagated to the current predictions. In this paper, to overcome this limitation, we propose a novel and effective algorithm for click-based interactive image segmentation, called MFP, which attempts to make full use of probability maps. We first modulate previous probability maps to enhance their representations of user-specified objects. Then, we feed the modulated probability maps as additional input to the segmentation network. We implement the proposed MFP algorithm based on the ResNet-34, HRNet-18, and ViT-B backbones and assess the performance extensively on various datasets. It is demonstrated that MFP meaningfully outperforms the existing algorithms using identical backbones. The source codes are available at \href{https://github.com/cwlee00/MFP}{https://github.com/cwlee00/MFP}.
Abstract:A novel algorithm to detect road lanes in videos, called recursive video lane detector (RVLD), is proposed in this paper, which propagates the state of a current frame recursively to the next frame. RVLD consists of an intra-frame lane detector (ILD) and a predictive lane detector (PLD). First, we design ILD to localize lanes in a still frame. Second, we develop PLD to exploit the information of the previous frame for lane detection in a current frame. To this end, we estimate a motion field and warp the previous output to the current frame. Using the warped information, we refine the feature map of the current frame to detect lanes more reliably. Experimental results show that RVLD outperforms existing detectors on video lane datasets. Our codes are available at https://github.com/dongkwonjin/RVLD.
Abstract:A novel 4K video frame interpolator based on bilateral transformer (BiFormer) is proposed in this paper, which performs three steps: global motion estimation, local motion refinement, and frame synthesis. First, in global motion estimation, we predict symmetric bilateral motion fields at a coarse scale. To this end, we propose BiFormer, the first transformer-based bilateral motion estimator. Second, we refine the global motion fields efficiently using blockwise bilateral cost volumes (BBCVs). Third, we warp the input frames using the refined motion fields and blend them to synthesize an intermediate frame. Extensive experiments demonstrate that the proposed BiFormer algorithm achieves excellent interpolation performance on 4K datasets. The source codes are available at https://github.com/JunHeum/BiFormer.
Abstract:A typical monocular depth estimator is trained for a single camera, so its performance drops severely on images taken with different cameras. To address this issue, we propose a versatile depth estimator (VDE), composed of a common relative depth estimator (CRDE) and multiple relative-to-metric converters (R2MCs). The CRDE extracts relative depth information, and each R2MC converts the relative information to predict metric depths for a specific camera. The proposed VDE can cope with diverse scenes, including both indoor and outdoor scenes, with only a 1.12\% parameter increase per camera. Experimental results demonstrate that VDE supports multiple cameras effectively and efficiently and also achieves state-of-the-art performance in the conventional single-camera scenario.
Abstract:Trit-plane coding enables deep progressive image compression, but it cannot use autoregressive context models. In this paper, we propose the context-based trit-plane coding (CTC) algorithm to achieve progressive compression more compactly. First, we develop the context-based rate reduction module to estimate trit probabilities of latent elements accurately and thus encode the trit-planes compactly. Second, we develop the context-based distortion reduction module to refine partial latent tensors from the trit-planes and improve the reconstructed image quality. Third, we propose a retraining scheme for the decoder to attain better rate-distortion tradeoffs. Extensive experiments show that CTC outperforms the baseline trit-plane codec significantly in BD-rate on the Kodak lossless dataset, while increasing the time complexity only marginally. Our codes are available at https://github.com/seungminjeon-github/CTC.