Abstract:Nuclei instance segmentation is an essential task in pathology image analysis, serving as the foundation for many downstream applications. The release of several public datasets has significantly advanced research in this area, yet many existing methods struggle with data imbalance issues. To address this challenge, this study introduces a data augmentation method, called NucleiMix, which is designed to balance the distribution of nuclei types by increasing the number of rare-type nuclei within datasets. NucleiMix operates in two phases. In the first phase, it identifies candidate locations similar to the surroundings of rare-type nuclei and inserts rare-type nuclei into the candidate locations. In the second phase, it employs a progressive inpainting strategy using a pre-trained diffusion model to seamlessly integrate rare-type nuclei into their new environments in replacement of major-type nuclei or background locations. We systematically evaluate the effectiveness of NucleiMix on three public datasets using two popular nuclei instance segmentation models. The results demonstrate the superior ability of NucleiMix to synthesize realistic rare-type nuclei and to enhance the quality of nuclei segmentation and classification in an accurate and robust manner.
Abstract:In computational pathology, several foundation models have recently emerged and demonstrated enhanced learning capability for analyzing pathology images. However, adapting these models to various downstream tasks remains challenging, particularly when faced with datasets from different sources and acquisition conditions, as well as limited data availability. In this study, we benchmark four pathology-specific foundation models across 14 datasets and two scenarios-consistency assessment and flexibility assessment-addressing diverse adaptation scenarios and downstream tasks. In the consistency assessment scenario, involving five fine-tuning methods, we found that the parameter-efficient fine-tuning approach was both efficient and effective for adapting pathology-specific foundation models to diverse datasets within the same downstream task. In the flexibility assessment scenario under data-limited environments, utilizing five few-shot learning methods, we observed that the foundation models benefited more from the few-shot learning methods that involve modification during the testing phase only. These findings provide insights that could guide the deployment of pathology-specific foundation models in real clinical settings, potentially improving the accuracy and reliability of pathology image analysis. The code for this study is available at: https://github.com/QuIIL/BenchmarkingPathologyFoundationModels.
Abstract:Whole slide image (WSI) classification is a crucial problem for cancer diagnostics in clinics and hospitals. A WSI, acquired at gigapixel size, is commonly tiled into patches and processed by multiple-instance learning (MIL) models. Previous MIL-based models designed for this problem have only been evaluated on individual tasks for specific organs, and the ability to handle multiple tasks within a single model has not been investigated. In this study, we propose MECFormer, a generative Transformer-based model designed to handle multiple tasks within one model. To leverage the power of learning multiple tasks simultaneously and to enhance the model's effectiveness in focusing on each individual task, we introduce an Expert Consultation Network, a projection layer placed at the beginning of the Transformer-based model. Additionally, to enable flexible classification, autoregressive decoding is incorporated by a language decoder for WSI classification. Through extensive experiments on five datasets involving four different organs, one cancer classification task, and four cancer subtyping tasks, MECFormer demonstrates superior performance compared to individual state-of-the-art multiple-instance learning models.
Abstract:In this paper, we present our solutions for a spectrum of automation tasks in life-saving intervention procedures within the Trauma THOMPSON (T3) Challenge, encompassing action recognition, action anticipation, and Visual Question Answering (VQA). For action recognition and anticipation, we propose a pre-processing strategy that samples and stitches multiple inputs into a single image and then incorporates momentum- and attention-based knowledge distillation to improve the performance of the two tasks. For training, we present an action dictionary-guided design, which consistently yields the most favorable results across our experiments. In the realm of VQA, we leverage object-level features and deploy co-attention networks to train both object and question features. Notably, we introduce a novel frame-question cross-attention mechanism at the network's core for enhanced performance. Our solutions achieve the $2^{nd}$ rank in action recognition and anticipation tasks and $1^{st}$ rank in the VQA task.
Abstract:There exist numerous diagnostic tasks in pathology. Conventional computational pathology formulates and tackles them as independent and individual image classification problems, thereby resulting in computational inefficiency and high costs. To address the challenges, we propose a generic, unified, and universal framework, called a continuous and adaptive learning model in pathology (CAMP), for pathology image classification. CAMP is a generative, efficient, and adaptive classification model that can continuously adapt to any classification task by leveraging pathology-specific prior knowledge and learning taskspecific knowledge with minimal computational cost and without forgetting the knowledge from the existing tasks. We evaluated CAMP on 22 datasets, including 1,171,526 patches and 11,811 pathology slides, across 17 classification tasks. CAMP achieves state-of-theart classification performance on a wide range of datasets and tasks at both patch- and slide-levels and reduces up to 94% of computation time and 85% of storage memory in comparison to the conventional classification models. Our results demonstrate that CAMP can offer a fundamental transformation in pathology image classification, paving the way for the fully digitized and computerized pathology practice.
Abstract:Deep learning has been increasingly incorporated into various computational pathology applications to improve its efficiency, accuracy, and robustness. Although successful, most previous approaches for image classification have crucial drawbacks. There exist numerous tasks in pathology, but one needs to build a model per task, i.e., a task-specific model, thereby increasing the number of models, training resources, and cost. Moreover, transferring arbitrary task-specific model to another task is still a challenging problem. Herein, we propose a task-agnostic generative and general pathology image classifier, so called GPC, that aims at learning from diverse kinds of pathology images and conducting numerous classification tasks in a unified model. GPC, equipped with a convolutional neural network and a Transformer-based language model, maps pathology images into a high-dimensional feature space and generates pertinent class labels as texts via the image-to-text classification mechanism. We evaluate GPC on six datasets for four different pathology image classification tasks. Experimental results show that GPC holds considerable potential for developing an effective and efficient universal model for pathology image analysis.
Abstract:Slide-level classification for whole-slide images (WSIs) has been widely recognized as a crucial problem in digital and computational pathology. Current approaches commonly consider WSIs as a bag of cropped patches and process them via multiple instance learning due to the large number of patches, which cannot fully explore the relationship among patches; in other words, the global information cannot be fully incorporated into decision making. Herein, we propose an efficient and effective slide-level classification model, named as FALFormer, that can process a WSI as a whole so as to fully exploit the relationship among the entire patches and to improve the classification performance. FALFormer is built based upon Transformers and self-attention mechanism. To lessen the computational burden of the original self-attention mechanism and to process the entire patches together in a WSI, FALFormer employs Nystr\"om self-attention which approximates the computation by using a smaller number of tokens or landmarks. For effective learning, FALFormer introduces feature-aware landmarks to enhance the representation power of the landmarks and the quality of the approximation. We systematically evaluate the performance of FALFormer using two public datasets, including CAMELYON16 and TCGA-BRCA. The experimental results demonstrate that FALFormer achieves superior performance on both datasets, outperforming the state-of-the-art methods for the slide-level classification. This suggests that FALFormer can facilitate an accurate and precise analysis of WSIs, potentially leading to improved diagnosis and prognosis on WSIs.
Abstract:Recently, vision-language pre-trained models have emerged in computational pathology. Previous works generally focused on the alignment of image-text pairs via the contrastive pre-training paradigm. Such pre-trained models have been applied to pathology image classification in zero-shot learning or transfer learning fashion. Herein, we hypothesize that the pre-trained vision-language models can be utilized for quantitative histopathology image analysis through a simple image-to-text retrieval. To this end, we propose a Text-based Quantitative and Explainable histopathology image analysis, which we call TQx. Given a set of histopathology images, we adopt a pre-trained vision-language model to retrieve a word-of-interest pool. The retrieved words are then used to quantify the histopathology images and generate understandable feature embeddings due to the direct mapping to the text description. To evaluate the proposed method, the text-based embeddings of four histopathology image datasets are utilized to perform clustering and classification tasks. The results demonstrate that TQx is able to quantify and analyze histopathology images that are comparable to the prevalent visual models in computational pathology.
Abstract:In computational pathology, cancer grading has been mainly studied as a categorical classification problem, which does not utilize the ordering nature of cancer grades such as the higher the grade is, the worse the cancer is. To incorporate the ordering relationship among cancer grades, we introduce a differential ordinal learning problem in which we define and learn the degree of difference in the categorical class labels between pairs of samples by using their differences in the feature space. To this end, we propose a transformer-based neural network that simultaneously conducts both categorical classification and differential ordinal classification for cancer grading. We also propose a tailored loss function for differential ordinal learning. Evaluating the proposed method on three different types of cancer datasets, we demonstrate that the adoption of differential ordinal learning can improve the accuracy and reliability of cancer grading, outperforming conventional cancer grading approaches. The proposed approach should be applicable to other diseases and problems as they involve ordinal relationship among class labels.
Abstract:Deep learning models have exhibited exceptional effectiveness in Computational Pathology (CPath) by tackling intricate tasks across an array of histology image analysis applications. Nevertheless, the presence of out-of-distribution data (stemming from a multitude of sources such as disparate imaging devices and diverse tissue preparation methods) can cause \emph{domain shift} (DS). DS decreases the generalization of trained models to unseen datasets with slightly different data distributions, prompting the need for innovative \emph{domain generalization} (DG) solutions. Recognizing the potential of DG methods to significantly influence diagnostic and prognostic models in cancer studies and clinical practice, we present this survey along with guidelines on achieving DG in CPath. We rigorously define various DS types, systematically review and categorize existing DG approaches and resources in CPath, and provide insights into their advantages, limitations, and applicability. We also conduct thorough benchmarking experiments with 28 cutting-edge DG algorithms to address a complex DG problem. Our findings suggest that careful experiment design and CPath-specific Stain Augmentation technique can be very effective. However, there is no one-size-fits-all solution for DG in CPath. Therefore, we establish clear guidelines for detecting and managing DS depending on different scenarios. While most of the concepts, guidelines, and recommendations are given for applications in CPath, we believe that they are applicable to most medical image analysis tasks as well.