Abstract:There exist numerous diagnostic tasks in pathology. Conventional computational pathology formulates and tackles them as independent and individual image classification problems, thereby resulting in computational inefficiency and high costs. To address the challenges, we propose a generic, unified, and universal framework, called a continuous and adaptive learning model in pathology (CAMP), for pathology image classification. CAMP is a generative, efficient, and adaptive classification model that can continuously adapt to any classification task by leveraging pathology-specific prior knowledge and learning taskspecific knowledge with minimal computational cost and without forgetting the knowledge from the existing tasks. We evaluated CAMP on 22 datasets, including 1,171,526 patches and 11,811 pathology slides, across 17 classification tasks. CAMP achieves state-of-theart classification performance on a wide range of datasets and tasks at both patch- and slide-levels and reduces up to 94% of computation time and 85% of storage memory in comparison to the conventional classification models. Our results demonstrate that CAMP can offer a fundamental transformation in pathology image classification, paving the way for the fully digitized and computerized pathology practice.
Abstract:In computational pathology, cancer grading has been mainly studied as a categorical classification problem, which does not utilize the ordering nature of cancer grades such as the higher the grade is, the worse the cancer is. To incorporate the ordering relationship among cancer grades, we introduce a differential ordinal learning problem in which we define and learn the degree of difference in the categorical class labels between pairs of samples by using their differences in the feature space. To this end, we propose a transformer-based neural network that simultaneously conducts both categorical classification and differential ordinal classification for cancer grading. We also propose a tailored loss function for differential ordinal learning. Evaluating the proposed method on three different types of cancer datasets, we demonstrate that the adoption of differential ordinal learning can improve the accuracy and reliability of cancer grading, outperforming conventional cancer grading approaches. The proposed approach should be applicable to other diseases and problems as they involve ordinal relationship among class labels.
Abstract:An automated segmentation and classification of nuclei is an essential task in digital pathology. The current deep learning-based approaches require a vast amount of annotated datasets by pathologists. However, the existing datasets are imbalanced among different types of nuclei in general, leading to a substantial performance degradation. In this paper, we propose a simple but effective data augmentation technique, termed GradMix, that is specifically designed for nuclei segmentation and classification. GradMix takes a pair of a major-class nucleus and a rare-class nucleus, creates a customized mixing mask, and combines them using the mask to generate a new rare-class nucleus. As it combines two nuclei, GradMix considers both nuclei and the neighboring environment by using the customized mixing mask. This allows us to generate realistic rare-class nuclei with varying environments. We employed two datasets to evaluate the effectiveness of GradMix. The experimental results suggest that GradMix is able to improve the performance of nuclei segmentation and classification in imbalanced pathology image datasets.