Abstract:In computational pathology, several foundation models have recently emerged and demonstrated enhanced learning capability for analyzing pathology images. However, adapting these models to various downstream tasks remains challenging, particularly when faced with datasets from different sources and acquisition conditions, as well as limited data availability. In this study, we benchmark four pathology-specific foundation models across 14 datasets and two scenarios-consistency assessment and flexibility assessment-addressing diverse adaptation scenarios and downstream tasks. In the consistency assessment scenario, involving five fine-tuning methods, we found that the parameter-efficient fine-tuning approach was both efficient and effective for adapting pathology-specific foundation models to diverse datasets within the same downstream task. In the flexibility assessment scenario under data-limited environments, utilizing five few-shot learning methods, we observed that the foundation models benefited more from the few-shot learning methods that involve modification during the testing phase only. These findings provide insights that could guide the deployment of pathology-specific foundation models in real clinical settings, potentially improving the accuracy and reliability of pathology image analysis. The code for this study is available at: https://github.com/QuIIL/BenchmarkingPathologyFoundationModels.
Abstract:There exist numerous diagnostic tasks in pathology. Conventional computational pathology formulates and tackles them as independent and individual image classification problems, thereby resulting in computational inefficiency and high costs. To address the challenges, we propose a generic, unified, and universal framework, called a continuous and adaptive learning model in pathology (CAMP), for pathology image classification. CAMP is a generative, efficient, and adaptive classification model that can continuously adapt to any classification task by leveraging pathology-specific prior knowledge and learning taskspecific knowledge with minimal computational cost and without forgetting the knowledge from the existing tasks. We evaluated CAMP on 22 datasets, including 1,171,526 patches and 11,811 pathology slides, across 17 classification tasks. CAMP achieves state-of-theart classification performance on a wide range of datasets and tasks at both patch- and slide-levels and reduces up to 94% of computation time and 85% of storage memory in comparison to the conventional classification models. Our results demonstrate that CAMP can offer a fundamental transformation in pathology image classification, paving the way for the fully digitized and computerized pathology practice.
Abstract:In computational pathology, cancer grading has been mainly studied as a categorical classification problem, which does not utilize the ordering nature of cancer grades such as the higher the grade is, the worse the cancer is. To incorporate the ordering relationship among cancer grades, we introduce a differential ordinal learning problem in which we define and learn the degree of difference in the categorical class labels between pairs of samples by using their differences in the feature space. To this end, we propose a transformer-based neural network that simultaneously conducts both categorical classification and differential ordinal classification for cancer grading. We also propose a tailored loss function for differential ordinal learning. Evaluating the proposed method on three different types of cancer datasets, we demonstrate that the adoption of differential ordinal learning can improve the accuracy and reliability of cancer grading, outperforming conventional cancer grading approaches. The proposed approach should be applicable to other diseases and problems as they involve ordinal relationship among class labels.
Abstract:Cancer grading is an essential task in pathology. The recent developments of artificial neural networks in computational pathology have shown that these methods hold great potential for improving the accuracy and quality of cancer diagnosis. However, the issues with the robustness and reliability of such methods have not been fully resolved yet. Herein, we propose a centroid-aware feature recalibration network that can conduct cancer grading in an accurate and robust manner. The proposed network maps an input pathology image into an embedding space and adjusts it by using centroids embedding vectors of different cancer grades via attention mechanism. Equipped with the recalibrated embedding vector, the proposed network classifiers the input pathology image into a pertinent class label, i.e., cancer grade. We evaluate the proposed network using colorectal cancer datasets that were collected under different environments. The experimental results confirm that the proposed network is able to conduct cancer grading in pathology images with high accuracy regardless of the environmental changes in the datasets.