Abstract:In recent interactive segmentation algorithms, previous probability maps are used as network input to help predictions in the current segmentation round. However, despite the utilization of previous masks, useful information contained in the probability maps is not well propagated to the current predictions. In this paper, to overcome this limitation, we propose a novel and effective algorithm for click-based interactive image segmentation, called MFP, which attempts to make full use of probability maps. We first modulate previous probability maps to enhance their representations of user-specified objects. Then, we feed the modulated probability maps as additional input to the segmentation network. We implement the proposed MFP algorithm based on the ResNet-34, HRNet-18, and ViT-B backbones and assess the performance extensively on various datasets. It is demonstrated that MFP meaningfully outperforms the existing algorithms using identical backbones. The source codes are available at \href{https://github.com/cwlee00/MFP}{https://github.com/cwlee00/MFP}.
Abstract:For click-based interactive segmentation methods, reducing the number of clicks required to obtain a desired segmentation result is essential. Although recent click-based methods yield decent segmentation results, we observe that substantial amount of clicks are required to segment elongated regions. To reduce the amount of user-effort required, we propose using lines instead of clicks for such cases. In this paper, an interactive segmentation algorithm which adaptively adopts either clicks or lines as input is proposed. Experimental results demonstrate that using lines can generate better segmentation results than clicks for several cases.