Abstract:By exploiting discrete signal processing and simulating brain neuron communication, Spiking Neural Networks (SNNs) offer a low-energy alternative to Artificial Neural Networks (ANNs). However, existing SNN models, still face high computational costs due to the numerous time steps as well as network depth and scale. The tens of billions of neurons and trillions of synapses in the human brain are developed from only 20,000 genes, which inspires us to design an efficient genetic encoding strategy that dynamic evolves to regulate large-scale deep SNNs at low cost. Therefore, we first propose a genetically scaled SNN encoding scheme that incorporates globally shared genetic interactions to indirectly optimize neuronal encoding instead of weight, which obviously brings about reductions in parameters and energy consumption. Then, a spatio-temporal evolutionary framework is designed to optimize the inherently initial wiring rules. Two dynamic regularization operators in the fitness function evolve the neuronal encoding to a suitable distribution and enhance information quality of the genetic interaction respectively, substantially accelerating evolutionary speed and improving efficiency. Experiments show that our approach compresses parameters by approximately 50\% to 80\%, while outperforming models on the same architectures by 0.21\% to 4.38\% on CIFAR-10, CIFAR-100 and ImageNet. In summary, the consistent trends of the proposed genetically encoded spatio-temporal evolution across different datasets and architectures highlight its significant enhancements in terms of efficiency, broad scalability and robustness, demonstrating the advantages of the brain-inspired evolutionary genetic coding for SNN optimization.
Abstract:Industrial recommendation systems (RS) rely on the multi-stage pipeline to balance effectiveness and efficiency when delivering items from a vast corpus to users. Existing RS benchmark datasets primarily focus on the exposure space, where novel RS algorithms are trained and evaluated. However, when these algorithms transition to real world industrial RS, they face a critical challenge of handling unexposed items which are a significantly larger space than the exposed one. This discrepancy profoundly impacts their practical performance. Additionally, these algorithms often overlook the intricate interplay between multiple RS stages, resulting in suboptimal overall system performance. To address this issue, we introduce RecFlow, an industrial full flow recommendation dataset designed to bridge the gap between offline RS benchmarks and the real online environment. Unlike existing datasets, RecFlow includes samples not only from the exposure space but also unexposed items filtered at each stage of the RS funnel. Our dataset comprises 38M interactions from 42K users across nearly 9M items with additional 1.9B stage samples collected from 9.3M online requests over 37 days and spanning 6 stages. Leveraging the RecFlow dataset, we conduct courageous exploration experiments, showcasing its potential in designing new algorithms to enhance effectiveness by incorporating stage-specific samples. Some of these algorithms have already been deployed online, consistently yielding significant gains. We propose RecFlow as the first comprehensive benchmark dataset for the RS community, supporting research on designing algorithms at any stage, study of selection bias, debiased algorithms, multi-stage consistency and optimality, multi-task recommendation, and user behavior modeling. The RecFlow dataset, along with the corresponding source code, is available at https://github.com/RecFlow-ICLR/RecFlow.
Abstract:Speaker verification system trained on one domain usually suffers performance degradation when applied to another domain. To address this challenge, researchers commonly use feature distribution matching-based methods in unsupervised domain adaptation scenarios where some unlabeled target domain data is available. However, these methods often have limited performance improvement and lack generalization in various mismatch situations. In this paper, we propose Prototype and Instance Contrastive Learning (PICL), a novel method for unsupervised domain adaptation in speaker verification through dual-level contrastive learning. For prototype contrastive learning, we generate pseudo labels via clustering to create dynamically updated prototype representations, aligning instances with their corresponding class or cluster prototypes. For instance contrastive learning, we minimize the distance between different views or augmentations of the same instance, ensuring robust and invariant representations resilient to variations like noise. This dual-level approach provides both high-level and low-level supervision, leading to improved generalization and robustness of the speaker verification model. Unlike previous studies that only evaluated mismatches in one situation, we have conducted relevant explorations on various datasets and achieved state-of-the-art performance currently, which also proves the generalization of our method.
Abstract:Anomalous Sound Detection (ASD) has gained significant interest through the application of various Artificial Intelligence (AI) technologies in industrial settings. Though possessing great potential, ASD systems can hardly be readily deployed in real production sites due to the generalization problem, which is primarily caused by the difficulty of data collection and the complexity of environmental factors. This paper introduces a robust ASD model that leverages audio pre-trained models. Specifically, we fine-tune these models using machine operation data, employing SpecAug as a data augmentation strategy. Additionally, we investigate the impact of utilizing Low-Rank Adaptation (LoRA) tuning instead of full fine-tuning to address the problem of limited data for fine-tuning. Our experiments on the DCASE2023 Task 2 dataset establish a new benchmark of 77.75% on the evaluation set, with a significant improvement of 6.48% compared with previous state-of-the-art (SOTA) models, including top-tier traditional convolutional networks and speech pre-trained models, which demonstrates the effectiveness of audio pre-trained models with LoRA tuning. Ablation studies are also conducted to showcase the efficacy of the proposed scheme.
Abstract:Speaker diarization is typically considered a discriminative task, using discriminative approaches to produce fixed diarization results. In this paper, we explore the use of neural network-based generative methods for speaker diarization for the first time. We implement a Flow-Matching (FM) based generative algorithm within the sequence-to-sequence target speaker voice activity detection (Seq2Seq-TSVAD) diarization system. Our experiments reveal that applying the generative method directly to the original binary label sequence space of the TS-VAD output is ineffective. To address this issue, we propose mapping the binary label sequence into a dense latent space before applying the generative algorithm and our proposed Flow-TSVAD method outperforms the Seq2Seq-TSVAD system. Additionally, we observe that the FM algorithm converges rapidly during the inference stage, requiring only two inference steps to achieve promising results. As a generative model, Flow-TSVAD allows for sampling different diarization results by running the model multiple times. Moreover, ensembling results from various sampling instances further enhances diarization performance.
Abstract:We present MELLE, a novel continuous-valued tokens based language modeling approach for text to speech synthesis (TTS). MELLE autoregressively generates continuous mel-spectrogram frames directly from text condition, bypassing the need for vector quantization, which are originally designed for audio compression and sacrifice fidelity compared to mel-spectrograms. Specifically, (i) instead of cross-entropy loss, we apply regression loss with a proposed spectrogram flux loss function to model the probability distribution of the continuous-valued tokens. (ii) we have incorporated variational inference into MELLE to facilitate sampling mechanisms, thereby enhancing the output diversity and model robustness. Experiments demonstrate that, compared to the two-stage codec language models VALL-E and its variants, the single-stage MELLE mitigates robustness issues by avoiding the inherent flaws of sampling discrete codes, achieves superior performance across multiple metrics, and, most importantly, offers a more streamlined paradigm. See https://aka.ms/melle for demos of our work.
Abstract:Large pre-trained models have demonstrated dominant performances in multiple areas, where the consistency between pre-training and fine-tuning is the key to success. However, few works reported satisfactory results of pre-trained models for the machine anomalous sound detection (ASD) task. This may be caused by the inconsistency of the pre-trained model and the inductive bias of machine audio, resulting in inconsistency in data and architecture. Thus, we propose AnoPatch which utilizes a ViT backbone pre-trained on AudioSet and fine-tunes it on machine audio. It is believed that machine audio is more related to audio datasets than speech datasets, and modeling it from patch level suits the sparsity of machine audio. As a result, AnoPatch showcases state-of-the-art (SOTA) performances on the DCASE 2020 ASD dataset and the DCASE 2023 ASD dataset. We also compare multiple pre-trained models and empirically demonstrate that better consistency yields considerable improvement.
Abstract:Large language models (LLMs) have achieved great success, but their occasional content fabrication, or hallucination, limits their practical application. Hallucination arises because LLMs struggle to admit ignorance due to inadequate training on knowledge boundaries. We call it a limitation of LLMs that they can not accurately express their knowledge boundary, answering questions they know while admitting ignorance to questions they do not know. In this paper, we aim to teach LLMs to recognize and express their knowledge boundary, so they can reduce hallucinations caused by fabricating when they do not know. We propose CoKE, which first probes LLMs' knowledge boundary via internal confidence given a set of questions, and then leverages the probing results to elicit the expression of the knowledge boundary. Extensive experiments show CoKE helps LLMs express knowledge boundaries, answering known questions while declining unknown ones, significantly improving in-domain and out-of-domain performance.
Abstract:The diversity of recommendation is equally crucial as accuracy in improving user experience. Existing studies, e.g., Determinantal Point Process (DPP) and Maximal Marginal Relevance (MMR), employ a greedy paradigm to iteratively select items that optimize both accuracy and diversity. However, prior methods typically exhibit quadratic complexity, limiting their applications to the re-ranking stage and are not applicable to other recommendation stages with a larger pool of candidate items, such as the pre-ranking and ranking stages. In this paper, we propose Contextual Distillation Model (CDM), an efficient recommendation model that addresses diversification, suitable for the deployment in all stages of industrial recommendation pipelines. Specifically, CDM utilizes the candidate items in the same user request as context to enhance the diversification of the results. We propose a contrastive context encoder that employs attention mechanisms to model both positive and negative contexts. For the training of CDM, we compare each target item with its context embedding and utilize the knowledge distillation framework to learn the win probability of each target item under the MMR algorithm, where the teacher is derived from MMR outputs. During inference, ranking is performed through a linear combination of the recommendation and student model scores, ensuring both diversity and efficiency. We perform offline evaluations on two industrial datasets and conduct online A/B test of CDM on the short-video platform KuaiShou. The considerable enhancements observed in both recommendation quality and diversity, as shown by metrics, provide strong superiority for the effectiveness of CDM.
Abstract:With the help of discrete neural audio codecs, large language models (LLM) have increasingly been recognized as a promising methodology for zero-shot Text-to-Speech (TTS) synthesis. However, sampling based decoding strategies bring astonishing diversity to generation, but also pose robustness issues such as typos, omissions and repetition. In addition, the high sampling rate of audio also brings huge computational overhead to the inference process of autoregression. To address these issues, we propose VALL-E R, a robust and efficient zero-shot TTS system, building upon the foundation of VALL-E. Specifically, we introduce a phoneme monotonic alignment strategy to strengthen the connection between phonemes and acoustic sequence, ensuring a more precise alignment by constraining the acoustic tokens to match their associated phonemes. Furthermore, we employ a codec-merging approach to downsample the discrete codes in shallow quantization layer, thereby accelerating the decoding speed while preserving the high quality of speech output. Benefiting from these strategies, VALL-E R obtains controllablity over phonemes and demonstrates its strong robustness by approaching the WER of ground truth. In addition, it requires fewer autoregressive steps, with over 60% time reduction during inference. This research has the potential to be applied to meaningful projects, including the creation of speech for those affected by aphasia. Audio samples will be available at: https://aka.ms/valler.