Abstract:We introduce the RetinaRegNet model, which can achieve state-of-the-art performance across various retinal image registration tasks. RetinaRegNet does not require training on any retinal images. It begins by establishing point correspondences between two retinal images using image features derived from diffusion models. This process involves the selection of feature points from the moving image using the SIFT algorithm alongside random point sampling. For each selected feature point, a 2D correlation map is computed by assessing the similarity between the feature vector at that point and the feature vectors of all pixels in the fixed image. The pixel with the highest similarity score in the correlation map corresponds to the feature point in the moving image. To remove outliers in the estimated point correspondences, we first applied an inverse consistency constraint, followed by a transformation-based outlier detector. This method proved to outperform the widely used random sample consensus (RANSAC) outlier detector by a significant margin. To handle large deformations, we utilized a two-stage image registration framework. A homography transformation was used in the first stage and a more accurate third-order polynomial transformation was used in the second stage. The model's effectiveness was demonstrated across three retinal image datasets: color fundus images, fluorescein angiography images, and laser speckle flowgraphy images. RetinaRegNet outperformed current state-of-the-art methods in all three datasets. It was especially effective for registering image pairs with large displacement and scaling deformations. This innovation holds promise for various applications in retinal image analysis. Our code is publicly available at https://github.com/mirthAI/RetinaRegNet.
Abstract:Advancements in medical imaging and endovascular grafting have facilitated minimally invasive treatments for aortic diseases. Accurate 3D segmentation of the aorta and its branches is crucial for interventions, as inaccurate segmentation can lead to erroneous surgical planning and endograft construction. Previous methods simplified aortic segmentation as a binary image segmentation problem, overlooking the necessity of distinguishing between individual aortic branches. In this paper, we introduce Context Infused Swin-UNet (CIS-UNet), a deep learning model designed for multi-class segmentation of the aorta and thirteen aortic branches. Combining the strengths of Convolutional Neural Networks (CNNs) and Swin transformers, CIS-UNet adopts a hierarchical encoder-decoder structure comprising a CNN encoder, symmetric decoder, skip connections, and a novel Context-aware Shifted Window Self-Attention (CSW-SA) as the bottleneck block. Notably, CSW-SA introduces a unique utilization of the patch merging layer, distinct from conventional Swin transformers. It efficiently condenses the feature map, providing a global spatial context and enhancing performance when applied at the bottleneck layer, offering superior computational efficiency and segmentation accuracy compared to the Swin transformers. We trained our model on computed tomography (CT) scans from 44 patients and tested it on 15 patients. CIS-UNet outperformed the state-of-the-art SwinUNetR segmentation model, which is solely based on Swin transformers, by achieving a superior mean Dice coefficient of 0.713 compared to 0.697, and a mean surface distance of 2.78 mm compared to 3.39 mm. CIS-UNet's superior 3D aortic segmentation offers improved precision and optimization for planning endovascular treatments. Our dataset and code will be publicly available.