Abstract:During crises, social media serves as a crucial coordination tool, but the vast influx of posts--from "actionable" requests and offers to generic content like emotional support, behavioural guidance, or outdated information--complicates effective classification. Although generative LLMs (Large Language Models) can address this issue with few-shot classification, their high computational demands limit real-time crisis response. While fine-tuning encoder-only models (e.g., BERT) is a popular choice, these models still exhibit higher inference times in resource-constrained environments. Moreover, although distilled variants (e.g., DistilBERT) exist, they are not tailored for the crisis domain. To address these challenges, we make two key contributions. First, we present CrisisHelpOffer, a novel dataset of 101k tweets collaboratively labelled by generative LLMs and validated by humans, specifically designed to distinguish actionable content from noise. Second, we introduce the first crisis-specific mini models optimized for deployment in resource-constrained settings. Across 13 crisis classification tasks, our mini models surpass BERT (also outperform or match the performance of RoBERTa, MPNet, and BERTweet), offering higher accuracy with significantly smaller sizes and faster speeds. The Medium model is 47% smaller with 3.8% higher accuracy at 3.5x speed, the Small model is 68% smaller with a 1.8% accuracy gain at 7.7x speed, and the Tiny model, 83% smaller, matches BERT's accuracy at 18.6x speed. All models outperform existing distilled variants, setting new benchmarks. Finally, as a case study, we analyze social media posts from a global crisis to explore help-seeking and assistance-offering behaviours in selected developing and developed countries.
Abstract:Dynamic Metasurface Antennas (DMAs) are transforming reconfigurable antenna technology by enabling energy-efficient, cost-effective beamforming through programmable meta-elements, eliminating the need for traditional phase shifters and delay lines. This breakthrough technology is emerging to revolutionize beamforming for next-generation wireless communication and sensing networks. In this paper, we present the design and real-world implementation of a DMA-assisted wireless communication platform operating in the license-free 60 GHz millimeter-wave (mmWave) band. Our system employs high-speed binary-coded sequences generated via a field-programmable gate array (FPGA), enabling real-time beam steering for spatial multiplexing and independent data transmission. A proof-of-concept experiment successfully demonstrates high-definition quadrature phase-shift keying (QPSK) modulated video transmission at 62 GHz. Furthermore, leveraging the DMA's multi-beam capability, we simultaneously transmit video to two spatially separated receivers, achieving accurate demodulation. We envision the proposed mmWave testbed as a platform for enabling the seamless integration of sensing and communication by allowing video transmission to be replaced with sensing data or utilizing an auxiliary wireless channel to transmit sensing information to multiple receivers. This synergy paves the way for advancing integrated sensing and communication (ISAC) in beyond-5G and 6G networks. Additionally, our testbed demonstrates potential for real-world use cases, including mmWave backhaul links and massive multiple-input multiple-output (MIMO) mmWave base stations.
Abstract:Multi-class segmentation of the aorta in computed tomography angiography (CTA) scans is essential for diagnosing and planning complex endovascular treatments for patients with aortic dissections. However, existing methods reduce aortic segmentation to a binary problem, limiting their ability to measure diameters across different branches and zones. Furthermore, no open-source dataset is currently available to support the development of multi-class aortic segmentation methods. To address this gap, we organized the AortaSeg24 MICCAI Challenge, introducing the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones. This dataset was designed to facilitate both model development and validation. The challenge attracted 121 teams worldwide, with participants leveraging state-of-the-art frameworks such as nnU-Net and exploring novel techniques, including cascaded models, data augmentation strategies, and custom loss functions. We evaluated the submitted algorithms using the Dice Similarity Coefficient (DSC) and Normalized Surface Distance (NSD), highlighting the approaches adopted by the top five performing teams. This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms. The annotated dataset, evaluation code, and implementations of the leading methods are publicly available to support further research. All resources can be accessed at https://aortaseg24.grand-challenge.org.
Abstract:Sentiment analysis is a key technology for companies and institutions to gauge public opinion on products, services or events. However, for large-scale sentiment analysis to be accessible to entities with modest computational resources, it needs to be performed in a resource-efficient way. While some efficient sentiment analysis systems exist, they tend to apply shallow heuristics, which do not take into account syntactic phenomena that can radically change sentiment. Conversely, alternatives that take syntax into account are computationally expensive. The SALSA project, funded by the European Research Council under a Proof-of-Concept Grant, aims to leverage recently-developed fast syntactic parsing techniques to build sentiment analysis systems that are lightweight and efficient, while still providing accuracy and explainability through the explicit use of syntax. We intend our approaches to be the backbone of a working product of interest for SMEs to use in production.
Abstract:Sentiment Analysis (SA) is a crucial aspect of Natural Language Processing (NLP), addressing subjective assessments in textual content. Syntactic parsing is useful in SA because explicit syntactic information can improve accuracy while providing explainability, but it tends to be a computational bottleneck in practice due to the slowness of parsing algorithms. This paper addresses said bottleneck by using a SEquence Labeling Syntactic Parser (SELSP) to inject syntax into SA. By treating dependency parsing as a sequence labeling problem, we greatly enhance the speed of syntax-based SA. SELSP is trained and evaluated on a ternary polarity classification task, demonstrating its faster performance and better accuracy in polarity prediction tasks compared to conventional parsers like Stanza and to heuristic approaches that use shallow syntactic rules for SA like VADER. This increased speed and improved accuracy make SELSP particularly appealing to SA practitioners in both research and industry. In addition, we test several sentiment dictionaries on our SELSP to see which one improves the performance in polarity prediction tasks. Moreover, we compare the SELSP with Transformer-based models trained on a 5-label classification task. The results show that dictionaries that capture polarity judgment variation provide better results than dictionaries that ignore polarity judgment variation. Moreover, we show that SELSP is considerably faster than Transformer-based models in polarity prediction tasks.
Abstract:Denoising diffusion probabilistic models (DDPMs) have achieved unprecedented success in computer vision. However, they remain underutilized in medical imaging, a field crucial for disease diagnosis and treatment planning. This is primarily due to the high computational cost associated with (1) the use of large number of time steps (e.g., 1,000) in diffusion processes and (2) the increased dimensionality of medical images, which are often 3D or 4D. Training a diffusion model on medical images typically takes days to weeks, while sampling each image volume takes minutes to hours. To address this challenge, we introduce Fast-DDPM, a simple yet effective approach capable of improving training speed, sampling speed, and generation quality simultaneously. Unlike DDPM, which trains the image denoiser across 1,000 time steps, Fast-DDPM trains and samples using only 10 time steps. The key to our method lies in aligning the training and sampling procedures to optimize time-step utilization. Specifically, we introduced two efficient noise schedulers with 10 time steps: one with uniform time step sampling and another with non-uniform sampling. We evaluated Fast-DDPM across three medical image-to-image generation tasks: multi-image super-resolution, image denoising, and image-to-image translation. Fast-DDPM outperformed DDPM and current state-of-the-art methods based on convolutional networks and generative adversarial networks in all tasks. Additionally, Fast-DDPM reduced the training time to 0.2x and the sampling time to 0.01x compared to DDPM. Our code is publicly available at: https://github.com/mirthAI/Fast-DDPM.
Abstract:Denoising diffusion probabilistic models (DDPMs) have achieved unprecedented success in computer vision. However, they remain underutilized in medical imaging, a field crucial for disease diagnosis and treatment planning. This is primarily due to the high computational cost associated with (1) the use of large number of time steps (e.g., 1,000) in diffusion processes and (2) the increased dimensionality of medical images, which are often 3D or 4D. Training a diffusion model on medical images typically takes days to weeks, while sampling each image volume takes minutes to hours. To address this challenge, we introduce Fast-DDPM, a simple yet effective approach capable of improving training speed, sampling speed, and generation quality simultaneously. Unlike DDPM, which trains the image denoiser across 1,000 time steps, Fast-DDPM trains and samples using only 10 time steps. The key to our method lies in aligning the training and sampling procedures. We introduced two efficient noise schedulers with 10 time steps: one with uniform time step sampling and another with non-uniform sampling. We evaluated Fast-DDPM across three medical image-to-image generation tasks: multi-image super-resolution, image denoising, and image-to-image translation. Fast-DDPM outperformed DDPM and current state-of-the-art methods based on convolutional networks and generative adversarial networks in all tasks. Additionally, Fast-DDPM reduced training time by a factor of 5 and sampling time by a factor of 100 compared to DDPM. Our code is publicly available at: https://github.com/mirthAI/Fast-DDPM.
Abstract:During times of crisis, social media platforms play a vital role in facilitating communication and coordinating resources. Amidst chaos and uncertainty, communities often rely on these platforms to share urgent pleas for help, extend support, and organize relief efforts. However, the sheer volume of conversations during such periods, which can escalate to unprecedented levels, necessitates the automated identification and matching of requests and offers to streamline relief operations. This study addresses the challenge of efficiently identifying and matching assistance requests and offers on social media platforms during emergencies. We propose CReMa (Crisis Response Matcher), a systematic approach that integrates textual, temporal, and spatial features for multi-lingual request-offer matching. By leveraging CrisisTransformers, a set of pre-trained models specific to crises, and a cross-lingual embedding space, our methodology enhances the identification and matching tasks while outperforming strong baselines such as RoBERTa, MPNet, and BERTweet, in classification tasks, and Universal Sentence Encoder, Sentence Transformers in crisis embeddings generation tasks. We introduce a novel multi-lingual dataset that simulates scenarios of help-seeking and offering assistance on social media across the 16 most commonly used languages in Australia. We conduct comprehensive cross-lingual experiments across these 16 languages, also while examining trade-offs between multiple vector search strategies and accuracy. Additionally, we analyze a million-scale geotagged global dataset to comprehend patterns in relation to seeking help and offering assistance on social media. Overall, these contributions advance the field of crisis informatics and provide benchmarks for future research in the area.
Abstract:Deep learning has become the de facto method for medical image segmentation, with 3D segmentation models excelling in capturing complex 3D structures and 2D models offering high computational efficiency. However, segmenting 2.5D images, which have high in-plane but low through-plane resolution, is a relatively unexplored challenge. While applying 2D models to individual slices of a 2.5D image is feasible, it fails to capture the spatial relationships between slices. On the other hand, 3D models face challenges such as resolution inconsistencies in 2.5D images, along with computational complexity and susceptibility to overfitting when trained with limited data. In this context, 2.5D models, which capture inter-slice correlations using only 2D neural networks, emerge as a promising solution due to their reduced computational demand and simplicity in implementation. In this paper, we introduce CSA-Net, a flexible 2.5D segmentation model capable of processing 2.5D images with an arbitrary number of slices through an innovative Cross-Slice Attention (CSA) module. This module uses the cross-slice attention mechanism to effectively capture 3D spatial information by learning long-range dependencies between the center slice (for segmentation) and its neighboring slices. Moreover, CSA-Net utilizes the self-attention mechanism to understand correlations among pixels within the center slice. We evaluated CSA-Net on three 2.5D segmentation tasks: (1) multi-class brain MRI segmentation, (2) binary prostate MRI segmentation, and (3) multi-class prostate MRI segmentation. CSA-Net outperformed leading 2D and 2.5D segmentation methods across all three tasks, demonstrating its efficacy and superiority. Our code is publicly available at https://github.com/mirthAI/CSA-Net.
Abstract:We introduce the RetinaRegNet model, which can achieve state-of-the-art performance across various retinal image registration tasks. RetinaRegNet does not require training on any retinal images. It begins by establishing point correspondences between two retinal images using image features derived from diffusion models. This process involves the selection of feature points from the moving image using the SIFT algorithm alongside random point sampling. For each selected feature point, a 2D correlation map is computed by assessing the similarity between the feature vector at that point and the feature vectors of all pixels in the fixed image. The pixel with the highest similarity score in the correlation map corresponds to the feature point in the moving image. To remove outliers in the estimated point correspondences, we first applied an inverse consistency constraint, followed by a transformation-based outlier detector. This method proved to outperform the widely used random sample consensus (RANSAC) outlier detector by a significant margin. To handle large deformations, we utilized a two-stage image registration framework. A homography transformation was used in the first stage and a more accurate third-order polynomial transformation was used in the second stage. The model's effectiveness was demonstrated across three retinal image datasets: color fundus images, fluorescein angiography images, and laser speckle flowgraphy images. RetinaRegNet outperformed current state-of-the-art methods in all three datasets. It was especially effective for registering image pairs with large displacement and scaling deformations. This innovation holds promise for various applications in retinal image analysis. Our code is publicly available at https://github.com/mirthAI/RetinaRegNet.