University of Texas at Austin, USA
Abstract:Despite advances in deep learning for estimating brain age from structural MRI data, incorporating functional MRI data is challenging due to its complex structure and the noisy nature of functional connectivity measurements. To address this, we present the Multitask Adversarial Variational Autoencoder, a custom deep learning framework designed to improve brain age predictions through multimodal MRI data integration. This model separates latent variables into generic and unique codes, isolating shared and modality-specific features. By integrating multitask learning with sex classification as an additional task, the model captures sex-specific aging patterns. Evaluated on the OpenBHB dataset, a large multisite brain MRI collection, the model achieves a mean absolute error of 2.77 years, outperforming traditional methods. This success positions M-AVAE as a powerful tool for metaverse-based healthcare applications in brain age estimation.
Abstract:This paper pioneers the use of quantum machine learning (QML) for modeling the Ohmic contact process in GaN high-electron-mobility transistors (HEMTs) for the first time. Utilizing data from 159 devices and variational auto-encoder-based augmentation, we developed a quantum kernel-based regressor (QKR) with a 2-level ZZ-feature map. Benchmarking against six classical machine learning (CML) models, our QKR consistently demonstrated the lowest mean absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE). Repeated statistical analysis confirmed its robustness. Additionally, experiments verified an MAE of 0.314 ohm-mm, underscoring the QKR's superior performance and potential for semiconductor applications, and demonstrating significant advancements over traditional CML methods.
Abstract:The no-reference image quality assessment is a challenging domain that addresses estimating image quality without the original reference. We introduce an improved mechanism to extract local and non-local information from images via different transformer encoders and CNNs. The utilization of Transformer encoders aims to mitigate locality bias and generate a non-local representation by sequentially processing CNN features, which inherently capture local visual structures. Establishing a stronger connection between subjective and objective assessments is achieved through sorting within batches of images based on relative distance information. A self-consistency approach to self-supervision is presented, explicitly addressing the degradation of no-reference image quality assessment (NR-IQA) models under equivariant transformations. Our approach ensures model robustness by maintaining consistency between an image and its horizontally flipped equivalent. Through empirical evaluation of five popular image quality assessment datasets, the proposed model outperforms alternative algorithms in the context of no-reference image quality assessment datasets, especially on smaller datasets. Codes are available at \href{https://github.com/mas94/ADTRS}{https://github.com/mas94/ADTRS}
Abstract:The rapid growth of Internet of Things (IoT) devices necessitates efficient data compression techniques to handle the vast amounts of data generated by these devices. In this context, chemiresistive sensor arrays (CSAs), a simple-to-fabricate but crucial component in IoT systems, generate large volumes of data due to their simultaneous multi-sensor operations. Classical principal component analysis (cPCA) methods, a common solution to the data compression challenge, face limitations in preserving critical information during dimensionality reduction. In this study, we present quantum principal component analysis (qPCA) as a superior alternative to enhance information retention. Our findings demonstrate that qPCA outperforms cPCA in various back-end machine-learning modeling tasks, particularly in low-dimensional scenarios when limited Quantum bits (qubits) can be accessed. These results underscore the potential of noisy intermediate-scale quantum (NISQ) computers, despite current qubit limitations, to revolutionize data processing in real-world IoT applications, particularly in enhancing the efficiency and reliability of CSA data compression and readout.
Abstract:Integration of quantum computing in generative machine learning models has the potential to offer benefits such as training speed-up and superior feature extraction. However, the existing quantum generative adversarial networks (QGANs) fail to generate high-quality images due to their patch-based, pixel-wise learning approaches. These methods capture only local details, ignoring the global structure and semantic information of images. In this work, we address these challenges by proposing a quantum image generative learning (QIGL) approach for high-quality medical image generation. Our proposed quantum generator leverages variational quantum circuit approach addressing scalability issues by extracting principal components from the images instead of dividing them into patches. Additionally, we integrate the Wasserstein distance within the QIGL framework to generate a diverse set of medical samples. Through a systematic set of simulations on X-ray images from knee osteoarthritis and medical MNIST datasets, our model demonstrates superior performance, achieving the lowest Fr\'echet Inception Distance (FID) scores compared to its classical counterpart and advanced QGAN models reported in the literature.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities, revolutionizing the integration of AI in daily life applications. However, they are prone to hallucinations, generating claims that contradict established facts, deviating from prompts, and producing inconsistent responses when the same prompt is presented multiple times. Addressing these issues is challenging due to the lack of comprehensive and easily assessable benchmark datasets. Most existing datasets are small and rely on multiple-choice questions, which are inadequate for evaluating the generative prowess of LLMs. To measure hallucination in LLMs, this paper introduces a comprehensive benchmark dataset comprising over 75,000 prompts across eight domains. These prompts are designed to elicit definitive, concise, and informative answers. The dataset is divided into two segments: one publicly available for testing and assessing LLM performance and a hidden segment for benchmarking various LLMs. In our experiments, we tested six LLMs-GPT-3.5, LLama 2, LLama 3, Gemini, Mixtral, and Zephyr-revealing that overall factual hallucination ranges from 59% to 82% on the public dataset and 57% to 76% in the hidden benchmark. Prompt misalignment hallucination ranges from 6% to 95% in the public dataset and 17% to 94% in the hidden counterpart. Average consistency ranges from 21% to 61% and 22% to 63%, respectively. Domain-wise analysis shows that LLM performance significantly deteriorates when asked for specific numeric information while performing moderately with person, location, and date queries. Our dataset demonstrates its efficacy and serves as a comprehensive benchmark for LLM performance evaluation. Our dataset and LLMs responses are available at \href{https://github.com/ashikiut/DefAn}{https://github.com/ashikiut/DefAn}.
Abstract:Jet tagging is an essential categorization problem in high energy physics. In recent times, Deep Learning has not only risen to the challenge of jet tagging but also significantly improved its performance. In this article, we propose an idea of a new architecture, Particle Multi-Axis transformer (ParMAT) which is a modified version of Particle transformer (ParT). ParMAT contains local and global spatial interactions within a single unit which improves its ability to handle various input lengths. We trained our model on JETCLASS, a publicly available large dataset that contains 100M jets of 10 different classes of particles. By integrating a parallel attention mechanism and pairwise interactions of particles in the attention mechanism,ParMAT achieves robustness and higher accuracy over the ParT and ParticleNet. The scalability of the model to huge datasets and its ability to automatically extract essential features demonstrate its potential for enhancing jet tagging.
Abstract:Despite their ever more widespread deployment throughout society, machine learning algorithms remain critically vulnerable to being spoofed by subtle adversarial tampering with their input data. The prospect of near-term quantum computers being capable of running {quantum machine learning} (QML) algorithms has therefore generated intense interest in their adversarial vulnerability. Here we show that quantum properties of QML algorithms can confer fundamental protections against such attacks, in certain scenarios guaranteeing robustness against classically-armed adversaries. We leverage tools from many-body physics to identify the quantum sources of this protection. Our results offer a theoretical underpinning of recent evidence which suggest quantum advantages in the search for adversarial robustness. In particular, we prove that quantum classifiers are: (i) protected against weak perturbations of data drawn from the trained distribution, (ii) protected against local attacks if they are insufficiently scrambling, and (iii) protected against universal adversarial attacks if they are sufficiently quantum chaotic. Our analytic results are supported by numerical evidence demonstrating the applicability of our theorems and the resulting robustness of a quantum classifier in practice. This line of inquiry constitutes a concrete pathway to advantage in QML, orthogonal to the usually sought improvements in model speed or accuracy.
Abstract:In recent years, street view imagery has grown to become one of the most important sources of geospatial data collection and urban analytics, which facilitates generating meaningful insights and assisting in decision-making. Synthesizing a street-view image from its corresponding satellite image is a challenging task due to the significant differences in appearance and viewpoint between the two domains. In this study, we screened 20 recent research papers to provide a thorough review of the state-of-the-art of how street-view images are synthesized from their corresponding satellite counterparts. The main findings are: (i) novel deep learning techniques are required for synthesizing more realistic and accurate street-view images; (ii) more datasets need to be collected for public usage; and (iii) more specific evaluation metrics need to be investigated for evaluating the generated images appropriately. We conclude that, due to applying outdated deep learning techniques, the recent literature failed to generate detailed and diverse street-view images.
Abstract:Human decision-making often relies on visual information from multiple perspectives or views. In contrast, machine learning-based object recognition utilizes information from a single image of the object. However, the information conveyed by a single image may not be sufficient for accurate decision-making, particularly in complex recognition problems. The utilization of multi-view 3D representations for object recognition has thus far demonstrated the most promising results for achieving state-of-the-art performance. This review paper comprehensively covers recent progress in multi-view 3D object recognition methods for 3D classification and retrieval tasks. Specifically, we focus on deep learning-based and transformer-based techniques, as they are widely utilized and have achieved state-of-the-art performance. We provide detailed information about existing deep learning-based and transformer-based multi-view 3D object recognition models, including the most commonly used 3D datasets, camera configurations and number of views, view selection strategies, pre-trained CNN architectures, fusion strategies, and recognition performance on 3D classification and 3D retrieval tasks. Additionally, we examine various computer vision applications that use multi-view classification. Finally, we highlight key findings and future directions for developing multi-view 3D object recognition methods to provide readers with a comprehensive understanding of the field.