Abstract:Dynamic Metasurface Antennas (DMAs) are transforming reconfigurable antenna technology by enabling energy-efficient, cost-effective beamforming through programmable meta-elements, eliminating the need for traditional phase shifters and delay lines. This breakthrough technology is emerging to revolutionize beamforming for next-generation wireless communication and sensing networks. In this paper, we present the design and real-world implementation of a DMA-assisted wireless communication platform operating in the license-free 60 GHz millimeter-wave (mmWave) band. Our system employs high-speed binary-coded sequences generated via a field-programmable gate array (FPGA), enabling real-time beam steering for spatial multiplexing and independent data transmission. A proof-of-concept experiment successfully demonstrates high-definition quadrature phase-shift keying (QPSK) modulated video transmission at 62 GHz. Furthermore, leveraging the DMA's multi-beam capability, we simultaneously transmit video to two spatially separated receivers, achieving accurate demodulation. We envision the proposed mmWave testbed as a platform for enabling the seamless integration of sensing and communication by allowing video transmission to be replaced with sensing data or utilizing an auxiliary wireless channel to transmit sensing information to multiple receivers. This synergy paves the way for advancing integrated sensing and communication (ISAC) in beyond-5G and 6G networks. Additionally, our testbed demonstrates potential for real-world use cases, including mmWave backhaul links and massive multiple-input multiple-output (MIMO) mmWave base stations.
Abstract:This paper presents the design and comprehensive measurements of a compact high-gain 32 element planar antenna array covering the n257 (26.5-29.5 GHz) millimeter wave (mmWave) band. First an 8-element quasi-uniform linear array is designed using a series-fed topology with fan shaped beams for point-to-multipoint connectivity followed by a compact corporate series feed network to design high-gain directive array for point-to-point connectivity. The radiation patterns of both antenna arrays in the azimuth and elevation planes are measured across a 180 degrees span using an over-the-air (OTA) compact antenna test range (CATR) system with a single rotary positioner. Moreover the procedure for quantifying and measuring the gain of mmWave antenna arrays is demonstrated in detail. The peak measured gain of the planar array is 18.45 dBi at 28.5 GHz while the half-power beamwidth of the planar array in the elevation and azimuth planes varies between 11 to 13 degrees, and 23-27 degrees respectively within the 26.5-29.5 GHz range. The measurement results match well with the simulations. The designed antenna array is suitable for various emerging 5G and beyond mmWave applications such as fixed wireless access, mmWave near-field focusing, high-resolution radar systems, and the characterization of mmWave path loss and channel sounding in diverse indoor environments and smart factories.
Abstract:Can the smart radio environment paradigm measurably enhance the performance of contemporary urban macrocells? In this study, we explore the impact of reconfigurable intelligent surfaces (RISs) on a real-world sub-6 GHz MIMO channel. A rooftop-mounted macrocell antenna has been adapted to enable frequency domain channel measurements to be ascertained. A nature-inspired beam search algorithm has been employed to maximize channel gain at user positions, revealing a potential 50% increase in channel capacity in certain circumstances. Analysis reveals, however, that the spatial characteristics of the channel can be adversely affected through the introduction of a RIS in these settings. The RIS prototype schematics, Gerber files, and source code have been made available to aid in future experimental efforts of the wireless research community.