Abstract:The safety of large language models (LLMs) has increasingly emerged as a fundamental aspect of their development. Existing safety alignment for LLMs is predominantly achieved through post-training methods, which are computationally expensive and often fail to generalize well across different models. A small number of lightweight alignment approaches either rely heavily on prior-computed safety injections or depend excessively on the model's own capabilities, resulting in limited generalization and degraded efficiency and usability during generation. In this work, we propose a safety-aware decoding method that requires only low-cost training of an expert model and employs a single neuron as a gating mechanism. By effectively balancing the model's intrinsic capabilities with external guidance, our approach simultaneously preserves utility and enhances output safety. It demonstrates clear advantages in training overhead and generalization across model scales, offering a new perspective on lightweight alignment for the safe and practical deployment of large language models. Code: https://github.com/Beijing-AISI/NGSD.
Abstract:In recent years, Spiking Neural Networks (SNNs) have achieved remarkable progress, with Spiking Transformers emerging as a promising architecture for energy-efficient sequence modeling. However, existing Spiking Transformers still lack a principled mechanism for effective temporal fusion, limiting their ability to fully exploit spatiotemporal dependencies. Inspired by feedforward-feedback modulation in the human visual pathway, we propose TEFormer, the first Spiking Transformer framework that achieves bidirectional temporal fusion by decoupling temporal modeling across its core components. Specifically, TEFormer employs a lightweight and hyperparameter-free forward temporal fusion mechanism in the attention module, enabling fully parallel computation, while incorporating a backward gated recurrent structure in the MLP to aggregate temporal information in reverse order and reinforce temporal consistency. Extensive experiments across a wide range of benchmarks demonstrate that TEFormer consistently and significantly outperforms strong SNN and Spiking Transformer baselines under diverse datasets. Moreover, through the first systematic evaluation of Spiking Transformers under different neural encoding schemes, we show that the performance gains of TEFormer remain stable across encoding choices, indicating that the improved temporal modeling directly translates into reliable accuracy improvements across varied spiking representations. These results collectively establish TEFormer as an effective and general framework for temporal modeling in Spiking Transformers.
Abstract:Multimodal Large Language Models (MLLMs) hold significant promise for revolutionizing traditional education and reducing teachers' workload. However, accurately interpreting unconstrained STEM student handwritten solutions with intertwined mathematical formulas, diagrams, and textual reasoning poses a significant challenge due to the lack of authentic and domain-specific benchmarks. Additionally, current evaluation paradigms predominantly rely on the outcomes of downstream tasks (e.g., auto-grading), which often probe only a subset of the recognized content, thereby failing to capture the MLLMs' understanding of complex handwritten logic as a whole. To bridge this gap, we release EDU-CIRCUIT-HW, a dataset consisting of 1,300+ authentic student handwritten solutions from a university-level STEM course. Utilizing the expert-verified verbatim transcriptions and grading reports of student solutions, we simultaneously evaluate various MLLMs' upstream recognition fidelity and downstream auto-grading performance. Our evaluation uncovers an astonishing scale of latent failures within MLLM-recognized student handwritten content, highlighting the models' insufficient reliability for auto-grading and other understanding-oriented applications in high-stakes educational settings. In solution, we present a case study demonstrating that leveraging identified error patterns to preemptively detect and rectify recognition errors, with only minimal human intervention (approximately 4% of the total solutions), can significantly enhance the robustness of the deployed AI-enabled grading system on unseen student solutions.
Abstract:Whether Large Language Models (LLMs) truly possess human-like Theory of Mind (ToM) capabilities has garnered increasing attention. However, existing benchmarks remain largely restricted to narrow paradigms like false belief tasks, failing to capture the full spectrum of human cognitive mechanisms. We introduce CogToM, a comprehensive, theoretically grounded benchmark comprising over 8000 bilingual instances across 46 paradigms, validated by 49 human annotator.A systematic evaluation of 22 representative models, including frontier models like GPT-5.1 and Qwen3-Max, reveals significant performance heterogeneities and highlights persistent bottlenecks in specific dimensions. Further analysis based on human cognitive patterns suggests potential divergences between LLM and human cognitive structures. CogToM offers a robust instrument and perspective for investigating the evolving cognitive boundaries of LLMs.
Abstract:Long-horizon conversational agents have to manage ever-growing interaction histories that quickly exceed the finite context windows of large language models (LLMs). Existing memory frameworks provide limited support for temporally structured information across hierarchical levels, often leading to fragmented memories and unstable long-horizon personalization. We present TiMem, a temporal--hierarchical memory framework that organizes conversations through a Temporal Memory Tree (TMT), enabling systematic memory consolidation from raw conversational observations to progressively abstracted persona representations. TiMem is characterized by three core properties: (1) temporal--hierarchical organization through TMT; (2) semantic-guided consolidation that enables memory integration across hierarchical levels without fine-tuning; and (3) complexity-aware memory recall that balances precision and efficiency across queries of varying complexity. Under a consistent evaluation setup, TiMem achieves state-of-the-art accuracy on both benchmarks, reaching 75.30% on LoCoMo and 76.88% on LongMemEval-S. It outperforms all evaluated baselines while reducing the recalled memory length by 52.20% on LoCoMo. Manifold analysis indicates clear persona separation on LoCoMo and reduced dispersion on LongMemEval-S. Overall, TiMem treats temporal continuity as a first-class organizing principle for long-horizon memory in conversational agents.
Abstract:Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods.
Abstract:Safety evaluation of large language models (LLMs) increasingly relies on LLM-as-a-Judge frameworks, but the high cost of frontier models limits scalability. We propose a cost-efficient multi-agent judging framework that employs Small Language Models (SLMs) through structured debates among critic, defender, and judge agents. To rigorously assess safety judgments, we construct HAJailBench, a large-scale human-annotated jailbreak benchmark comprising 12,000 adversarial interactions across diverse attack methods and target models. The dataset provides fine-grained, expert-labeled ground truth for evaluating both safety robustness and judge reliability. Our SLM-based framework achieves agreement comparable to GPT-4o judges on HAJailBench while substantially reducing inference cost. Ablation results show that three rounds of debate yield the optimal balance between accuracy and efficiency. These findings demonstrate that structured, value-aligned debate enables SLMs to capture semantic nuances of jailbreak attacks and that HAJailBench offers a reliable foundation for scalable LLM safety evaluation.
Abstract:The alignment of large language models (LLMs) with human values is critical for their safe and effective deployment across diverse user populations. However, existing benchmarks often neglect cultural and demographic diversity, leading to limited understanding of how value alignment generalizes globally. In this work, we introduce MVPBench, a novel benchmark that systematically evaluates LLMs' alignment with multi-dimensional human value preferences across 75 countries. MVPBench contains 24,020 high-quality instances annotated with fine-grained value labels, personalized questions, and rich demographic metadata, making it the most comprehensive resource of its kind to date. Using MVPBench, we conduct an in-depth analysis of several state-of-the-art LLMs, revealing substantial disparities in alignment performance across geographic and demographic lines. We further demonstrate that lightweight fine-tuning methods, such as Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO), can significantly enhance value alignment in both in-domain and out-of-domain settings. Our findings underscore the necessity for population-aware alignment evaluation and provide actionable insights for building culturally adaptive and value-sensitive LLMs. MVPBench serves as a practical foundation for future research on global alignment, personalized value modeling, and equitable AI development.



Abstract:Rapidly improving AI capabilities and autonomy hold significant promise of transformation, but are also driving vigorous debate on how to ensure that AI is safe, i.e., trustworthy, reliable, and secure. Building a trusted ecosystem is therefore essential -- it helps people embrace AI with confidence and gives maximal space for innovation while avoiding backlash. The "2025 Singapore Conference on AI (SCAI): International Scientific Exchange on AI Safety" aimed to support research in this space by bringing together AI scientists across geographies to identify and synthesise research priorities in AI safety. This resulting report builds on the International AI Safety Report chaired by Yoshua Bengio and backed by 33 governments. By adopting a defence-in-depth model, this report organises AI safety research domains into three types: challenges with creating trustworthy AI systems (Development), challenges with evaluating their risks (Assessment), and challenges with monitoring and intervening after deployment (Control).
Abstract:Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks, which can bypass safety alignment and elicit harmful outputs. Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques, and lack systematic, reproducible analysis. In this work, we introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges. Our framework implements 19 attack methods and 12 defense mechanisms, along with multiple judgment strategies, all within a flexible plugin architecture supporting diverse LLM interfaces, multiple interaction modes, and configuration-driven experimentation that enhances reproducibility and practical deployment. Built on this framework, we develop PandaBench, a comprehensive benchmark that evaluates the interactions between these attack/defense methods across 49 LLMs and various judgment approaches, requiring over 3 billion tokens to execute. Our extensive evaluation reveals key insights into model vulnerabilities, defense cost-performance trade-offs, and judge consistency. We find that no single defense is optimal across all dimensions and that judge disagreement introduces nontrivial variance in safety assessments. We release the code, configurations, and evaluation results to support transparent and reproducible research in LLM safety.