Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of ageing
Abstract:Automatic Radiology Report Generation (RRG) is an important topic for alleviating the substantial workload of radiologists. Existing RRG approaches rely on supervised regression based on different architectures or additional knowledge injection,while the generated report may not align optimally with radiologists' preferences. Especially, since the preferences of radiologists are inherently heterogeneous and multidimensional, e.g., some may prioritize report fluency, while others emphasize clinical accuracy. To address this problem,we propose a new RRG method via Multi-objective Preference Optimization (MPO) to align the pre-trained RRG model with multiple human preferences, which can be formulated by multi-dimensional reward functions and optimized by multi-objective reinforcement learning (RL). Specifically, we use a preference vector to represent the weight of preferences and use it as a condition for the RRG model. Then, a linearly weighed reward is obtained via a dot product between the preference vector and multi-dimensional reward.Next,the RRG model is optimized to align with the preference vector by optimizing such a reward via RL. In the training stage,we randomly sample diverse preference vectors from the preference space and align the model by optimizing the weighted multi-objective rewards, which leads to an optimal policy on the entire preference space. When inference,our model can generate reports aligned with specific preferences without further fine-tuning. Extensive experiments on two public datasets show the proposed method can generate reports that cater to different preferences in a single model and achieve state-of-the-art performance.
Abstract:The use of copyrighted materials in training generative language models raises critical legal and ethical questions. This paper presents a framework for and the results of empirically assessing the impact of copyrighted materials on the performance of large language models (LLMs) for Norwegian. We found that both books and newspapers contribute positively when the models are evaluated on a diverse set of Norwegian benchmarks, while fiction works possibly lead to decreased performance. Our experiments could inform the creation of a compensation scheme for authors whose works contribute to AI development.
Abstract:In this article, we present an intelligent framework for 5G new radio (NR) indoor positioning under a monostatic configuration. The primary objective is to estimate both the angle of arrival and time of arrival simultaneously. This requires capturing the pertinent information from both the antenna and subcarrier dimensions of the receive signals. To tackle the challenges posed by the intricacy of the high-dimensional information matrix, coupled with the impact of irregular array errors, we design a deep learning scheme. Recognizing that the phase difference between any two subcarriers and antennas encodes spatial information of the target, we contend that the transformer network is better suited for this problem compared to the convolutional neural network which excels in local feature extraction. To further enhance the network's fitting capability, we integrate the transformer with a model-based multiple-signal-classification (MUSIC) region decision mechanism. Numerical results and field tests demonstrate the effectiveness of the proposed framework in accurately calibrating the irregular angle-dependent array error and improving positioning accuracy.
Abstract:This technical report presents Yi-Lightning, our latest flagship large language model (LLM). It achieves exceptional performance, ranking 6th overall on Chatbot Arena, with particularly strong results (2nd to 4th place) in specialized categories including Chinese, Math, Coding, and Hard Prompts. Yi-Lightning leverages an enhanced Mixture-of-Experts (MoE) architecture, featuring advanced expert segmentation and routing mechanisms coupled with optimized KV-caching techniques. Our development process encompasses comprehensive pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF), where we devise deliberate strategies for multi-stage training, synthetic data construction, and reward modeling. Furthermore, we implement RAISE (Responsible AI Safety Engine), a four-component framework to address safety issues across pre-training, post-training, and serving phases. Empowered by our scalable super-computing infrastructure, all these innovations substantially reduce training, deployment and inference costs while maintaining high-performance standards. With further evaluations on public academic benchmarks, Yi-Lightning demonstrates competitive performance against top-tier LLMs, while we observe a notable disparity between traditional, static benchmark results and real-world, dynamic human preferences. This observation prompts a critical reassessment of conventional benchmarks' utility in guiding the development of more intelligent and powerful AI systems for practical applications. Yi-Lightning is now available through our developer platform at https://platform.lingyiwanwu.com.
Abstract:Deep reinforcement learning (DRL) has achieved remarkable success in various research domains. However, its reliance on neural networks results in a lack of transparency, which limits its practical applications. To achieve explainability, decision trees have emerged as a popular and promising alternative to neural networks. Nonetheless, due to their limited expressiveness, traditional decision trees struggle with high-dimensional long-horizon continuous control tasks. In this paper, we proposes SkillTree, a novel framework that reduces complex continuous action spaces into discrete skill spaces. Our hierarchical approach integrates a differentiable decision tree within the high-level policy to generate skill embeddings, which subsequently guide the low-level policy in executing skills. By making skill decisions explainable, we achieve skill-level explainability, enhancing the understanding of the decision-making process in complex tasks. Experimental results demonstrate that our method achieves performance comparable to skill-based neural networks in complex robotic arm control domains. Furthermore, SkillTree offers explanations at the skill level, thereby increasing the transparency of the decision-making process.
Abstract:A significant challenge in wet lab experiments with current drug design generative models is the trade-off between pharmacological properties and synthesizability. Molecules predicted to have highly desirable properties are often difficult to synthesize, while those that are easily synthesizable tend to exhibit less favorable properties. As a result, evaluating the synthesizability of molecules in general drug design scenarios remains a significant challenge in the field of drug discovery. The commonly used synthetic accessibility (SA) score aims to evaluate the ease of synthesizing generated molecules, but it falls short of guaranteeing that synthetic routes can actually be found. Inspired by recent advances in top-down synthetic route generation, we propose a new, data-driven metric to evaluate molecule synthesizability. Our approach directly assesses the feasibility of synthetic routes for a given molecule through our proposed round-trip score. This novel metric leverages the synergistic duality between retrosynthetic planners and reaction predictors, both of which are trained on extensive reaction datasets. To demonstrate the efficacy of our method, we conduct a comprehensive evaluation of round-trip scores alongside search success rate across a range of representative molecule generative models. Code is available at https://github.com/SongtaoLiu0823/SDDBench.
Abstract:Robot task planning is an important problem for autonomous robots in long-horizon challenging tasks. As large pre-trained models have demonstrated superior planning ability, recent research investigates utilizing large models to achieve autonomous planning for robots in diverse tasks. However, since the large models are pre-trained with Internet data and lack the knowledge of real task scenes, large models as planners may make unsafe decisions that hurt the robots and the surrounding environments. To solve this challenge, we propose a novel Safe Planner framework, which empowers safety awareness in large pre-trained models to accomplish safe and executable planning. In this framework, we develop a safety prediction module to guide the high-level large model planner, and this safety module trained in a simulator can be effectively transferred to real-world tasks. The proposed Safe Planner framework is evaluated on both simulated environments and real robots. The experiment results demonstrate that Safe Planner not only achieves state-of-the-art task success rates, but also substantially improves safety during task execution. The experiment videos are shown in https://sites.google.com/view/safeplanner .
Abstract:The prevalent use of Byte Pair Encoding (BPE) in Large Language Models (LLMs) facilitates robust handling of subword units and avoids issues of out-of-vocabulary words. Despite its success, a critical challenge persists: long tokens, rich in semantic information, have fewer occurrences in tokenized datasets compared to short tokens, which can result in imbalanced learning issue across different tokens. To address that, we propose LBPE, which prioritizes long tokens during the encoding process. LBPE generates tokens according to their reverse ranks of token length rather than their ranks in the vocabulary, granting longer tokens higher priority during the encoding process. Consequently, LBPE smooths the frequency differences between short and long tokens, and thus mitigates the learning imbalance. Extensive experiments across diverse language modeling tasks demonstrate that LBPE consistently outperforms the original BPE, well demonstrating its effectiveness.
Abstract:In practical applications, the unpredictable movement of obstacles and the imprecise state observation of robots introduce significant uncertainties for the swarm of robots, especially in cluster environments. However, existing methods are difficult to realize safe navigation, considering uncertainties, complex environmental structures, and robot swarms. This paper introduces an extended state model predictive control planner with a safe probability field to address the multi-robot navigation problem in complex, dynamic, and uncertain environments. Initially, the safe probability field offers an innovative approach to model the uncertainty of external dynamic obstacles, combining it with an unconstrained optimization method to generate safe trajectories for multi-robot online. Subsequently, the extended state model predictive controller can accurately track these generated trajectories while considering the robots' inherent model constraints and state uncertainty, thus ensuring the practical feasibility of the planned trajectories. Simulation experiments show a success rate four times higher than that of state-of-the-art algorithms. Physical experiments demonstrate the method's ability to operate in real-time, enabling safe navigation for multi-robot in uncertain environments.
Abstract:With the rapid advancement of Natural Language Processing in recent years, numerous studies have shown that generic summaries generated by Large Language Models (LLMs) can sometimes surpass those annotated by experts, such as journalists, according to human evaluations. However, there is limited research on whether these generic summaries meet the individual needs of ordinary people. The biggest obstacle is the lack of human-annotated datasets from the general public. Existing work on personalized summarization often relies on pseudo datasets created from generic summarization datasets or controllable tasks that focus on specific named entities or other aspects, such as the length and specificity of generated summaries, collected from hypothetical tasks without the annotators' initiative. To bridge this gap, we propose a high-quality, personalized, manually annotated abstractive summarization dataset called PersonalSum. This dataset is the first to investigate whether the focus of public readers differs from the generic summaries generated by LLMs. It includes user profiles, personalized summaries accompanied by source sentences from given articles, and machine-generated generic summaries along with their sources. We investigate several personal signals - entities/topics, plot, and structure of articles - that may affect the generation of personalized summaries using LLMs in a few-shot in-context learning scenario. Our preliminary results and analysis indicate that entities/topics are merely one of the key factors that impact the diverse preferences of users, and personalized summarization remains a significant challenge for existing LLMs.