Abstract:Railway Turnout Machines (RTMs) are mission-critical components of the railway transportation infrastructure, responsible for directing trains onto desired tracks. For safety assurance applications, especially in early-warning scenarios, RTM faults are expected to be detected as early as possible on a continuous 7x24 basis. However, limited emphasis has been placed on distributed model inference frameworks that can meet the inference latency and reliability requirements of such mission critical fault diagnosis systems. In this paper, an edge-cloud collaborative early-warning system is proposed to enable real-time and downtime-tolerant fault diagnosis of RTMs, providing a new paradigm for the deployment of models in safety-critical scenarios. Firstly, a modular fault diagnosis model is designed specifically for distributed deployment, which utilizes a hierarchical architecture consisting of the prior knowledge module, subordinate classifiers, and a fusion layer for enhanced accuracy and parallelism. Then, a cloud-edge collaborative framework leveraging pipeline parallelism, namely CEC-PA, is developed to minimize the overhead resulting from distributed task execution and context exchange by strategically partitioning and offloading model components across cloud and edge. Additionally, an election consensus mechanism is implemented within CEC-PA to ensure system robustness during coordinator node downtime. Comparative experiments and ablation studies are conducted to validate the effectiveness of the proposed distributed fault diagnosis approach. Our ensemble-based fault diagnosis model achieves a remarkable 97.4% accuracy on a real-world dataset collected by Nanjing Metro in Jiangsu Province, China. Meanwhile, CEC-PA demonstrates superior recovery proficiency during node disruptions and speed-up ranging from 1.98x to 7.93x in total inference time compared to its counterparts.
Abstract:Reconstructing neuron morphology from 3D light microscope imaging data is critical to aid neuroscientists in analyzing brain networks and neuroanatomy. With the boost from deep learning techniques, a variety of learning-based segmentation models have been developed to enhance the signal-to-noise ratio of raw neuron images as a pre-processing step in the reconstruction workflow. However, most existing models directly encode the latent representative features of volumetric neuron data but neglect their intrinsic morphological knowledge. To address this limitation, we design a novel framework that distills the prior knowledge from a 2D Vision Transformer pre-trained on extensive 2D natural images to facilitate neuronal morphological learning of our 3D Vision Transformer. To bridge the knowledge gap between the 2D natural image and 3D microscopic morphologic domains, we propose a deformable tubular transferring strategy that adapts the pre-trained 2D natural knowledge to the inherent tubular characteristics of neuronal structure in the latent embedding space. The experimental results on the Janelia dataset of the BigNeuron project demonstrate that our method achieves a segmentation performance improvement of 4.53% in mean Dice and 3.56% in mean 95% Hausdorff distance.
Abstract:Multi-sensor fusion significantly enhances the accuracy and robustness of 3D semantic occupancy prediction, which is crucial for autonomous driving and robotics. However, existing approaches depend on large image resolutions and complex networks to achieve top performance, hindering their application in practical scenarios. Additionally, most multi-sensor fusion approaches focus on improving fusion features while overlooking the exploration of supervision strategies for these features. To this end, we propose DAOcc, a novel multi-sensor fusion occupancy network that leverages 3D object detection supervision to assist in achieving superior performance, while using a deployment-friendly image feature extraction network and practical input image resolution. Furthermore, we introduce a BEV View Range Extension strategy to mitigate the adverse effects of reduced image resolution. As a result, our approach achieves new state-of-the-art results on the Occ3D-nuScenes and SurroundOcc datasets, using ResNet50 and a 256x704 input image resolution. Code will be made available at https://github.com/AlphaPlusTT/DAOcc.
Abstract:Integrated Sensing and Communication (ISAC) is one of the key technologies in 6G, and related research and standardization efforts are progressing vigorously. Wireless channel simulation is the cornerstone for the evaluation and optimization of wireless communication technologies. This paper proposes a design and implementation method for an ISAC channel simulation based on a Geometry-Based Stochastic Model (GBSM) simulation framework. First, we introduce the progress of 3GPP ISAC channel standardization and the key topics of discussion. Second, addressing the current lack of a standardized ISAC channel simulation framework, we propose a cascaded ISAC channel simulation framework based on GBSM, leveraging our team's related measurements, analyses, and proposal results. Based on this framework, we develop and design the ISAC channel simulator BUPTCMCC-6G-CMG+. Finally, we analyze and validate the simulation platform results, and provide some prospects for future ISAC testing research combined with channel simulators.
Abstract:Recent advancements in Vision-Language (VL) research have sparked new benchmarks for complex visual reasoning, challenging models' advanced reasoning ability. Traditional Vision-Language Models (VLMs) perform well in visual perception tasks while struggling with complex reasoning scenarios. Conversely, Large Language Models (LLMs) demonstrate robust text reasoning capabilities; however, they lack visual acuity. To bridge this gap, we propose Complex Visual Reasoning Large Language Models (CVR-LLM), capitalizing on VLMs' visual perception proficiency and LLMs' extensive reasoning capability. Unlike recent multimodal large language models (MLLMs) that require a projection layer, our approach transforms images into detailed, context-aware descriptions using an iterative self-refinement loop and leverages LLMs' text knowledge for accurate predictions without extra training. We also introduce a novel multi-modal in-context learning (ICL) methodology to enhance LLMs' contextual understanding and reasoning. Additionally, we introduce Chain-of-Comparison (CoC), a step-by-step comparison technique enabling contrasting various aspects of predictions. Our CVR-LLM presents the first comprehensive study across a wide array of complex visual reasoning tasks and achieves SOTA performance among all.
Abstract:To make sense of massive data, we often fit simplified models and then interpret the parameters; for example, we cluster the text embeddings and then interpret the mean parameters of each cluster. However, these parameters are often high-dimensional and hard to interpret. To make model parameters directly interpretable, we introduce a family of statistical models -- including clustering, time series, and classification models -- parameterized by natural language predicates. For example, a cluster of text about COVID could be parameterized by the predicate "discusses COVID". To learn these statistical models effectively, we develop a model-agnostic algorithm that optimizes continuous relaxations of predicate parameters with gradient descent and discretizes them by prompting language models (LMs). Finally, we apply our framework to a wide range of problems: taxonomizing user chat dialogues, characterizing how they evolve across time, finding categories where one language model is better than the other, clustering math problems based on subareas, and explaining visual features in memorable images. Our framework is highly versatile, applicable to both textual and visual domains, can be easily steered to focus on specific properties (e.g. subareas), and explains sophisticated concepts that classical methods (e.g. n-gram analysis) struggle to produce.
Abstract:We present a framework for learning to generate background music from video inputs. Unlike existing works that rely on symbolic musical annotations, which are limited in quantity and diversity, our method leverages large-scale web videos accompanied by background music. This enables our model to learn to generate realistic and diverse music. To accomplish this goal, we develop a generative video-music Transformer with a novel semantic video-music alignment scheme. Our model uses a joint autoregressive and contrastive learning objective, which encourages the generation of music aligned with high-level video content. We also introduce a novel video-beat alignment scheme to match the generated music beats with the low-level motions in the video. Lastly, to capture fine-grained visual cues in a video needed for realistic background music generation, we introduce a new temporal video encoder architecture, allowing us to efficiently process videos consisting of many densely sampled frames. We train our framework on our newly curated DISCO-MV dataset, consisting of 2.2M video-music samples, which is orders of magnitude larger than any prior datasets used for video music generation. Our method outperforms existing approaches on the DISCO-MV and MusicCaps datasets according to various music generation evaluation metrics, including human evaluation. Results are available at https://genjib.github.io/project_page/VMAs/index.html
Abstract:Accurate and robust LiDAR 3D object detection is essential for comprehensive scene understanding in autonomous driving. Despite its importance, LiDAR detection performance is limited by inherent constraints of point cloud data, particularly under conditions of extended distances and occlusions. Recently, temporal aggregation has been proven to significantly enhance detection accuracy by fusing multi-frame viewpoint information and enriching the spatial representation of objects. In this work, we introduce a novel LiDAR 3D object detection framework, namely LiSTM, to facilitate spatial-temporal feature learning with cross-frame motion forecasting information. We aim to improve the spatial-temporal interpretation capabilities of the LiDAR detector by incorporating a dynamic prior, generated from a non-learnable motion estimation model. Specifically, Motion-Guided Feature Aggregation (MGFA) is proposed to utilize the object trajectory from previous and future motion states to model spatial-temporal correlations into gaussian heatmap over a driving sequence. This motion-based heatmap then guides the temporal feature fusion, enriching the proposed object features. Moreover, we design a Dual Correlation Weighting Module (DCWM) that effectively facilitates the interaction between past and prospective frames through scene- and channel-wise feature abstraction. In the end, a cascade cross-attention-based decoder is employed to refine the 3D prediction. We have conducted experiments on the Waymo and nuScenes datasets to demonstrate that the proposed framework achieves superior 3D detection performance with effective spatial-temporal feature learning.
Abstract:Large Language Models (LLMs) have showcased exceptional ability in causal reasoning from textual information. However, will these causalities remain straightforward for Vision Large Language Models (VLLMs) when only visual hints are provided? Motivated by this, we propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge VLLMs to infer semantic cause-and-effect relationship when solely relying on visual cues such as action, appearance, clothing, and environment. Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues, which can effectively evaluate VLLMs' causal reasoning capabilities. Additionally, we develop tailored metrics from multiple perspectives, including image-level match, phrase-level understanding, and sentence-level explanation, to comprehensively assess VLLMs' comprehension abilities. Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped. Furthermore, we perform a comprehensive analysis to understand these models' shortcomings from different views and suggest directions for future research. We hope MuCR can serve as a valuable resource and foundational benchmark in multimodal causal reasoning research. The project is available at: https://github.com/Zhiyuan-Li-John/MuCR
Abstract:Large language models (LLMs) demonstrate great potential for problems with implicit graphical structures, while recent works seek to enhance the graph reasoning capabilities of LLMs through specialized instruction tuning. The resulting 'graph LLMs' are evaluated with in-distribution settings only, thus it remains underexplored whether LLMs are learning generalizable graph reasoning skills or merely memorizing patterns in the synthetic training data. To this end, we propose the NLGift benchmark, an evaluation suite of LLM graph reasoning generalization: whether LLMs could go beyond semantic, numeric, structural, reasoning patterns in the synthetic training data and improve utility on real-world graph-based tasks. Extensive experiments with two LLMs across four graph reasoning tasks demonstrate that while generalization on simple patterns (semantic, numeric) is somewhat satisfactory, LLMs struggle to generalize across reasoning and real-world patterns, casting doubt on the benefit of synthetic graph tuning for real-world tasks with underlying network structures. We explore three strategies to improve LLM graph reasoning generalization, and we find that while post-training alignment is most promising for real-world tasks, empowering LLM graph reasoning to go beyond pattern memorization remains an open research question.