Abstract:Information comes in diverse modalities. Multimodal native AI models are essential to integrate real-world information and deliver comprehensive understanding. While proprietary multimodal native models exist, their lack of openness imposes obstacles for adoptions, let alone adaptations. To fill this gap, we introduce Aria, an open multimodal native model with best-in-class performance across a wide range of multimodal, language, and coding tasks. Aria is a mixture-of-expert model with 3.9B and 3.5B activated parameters per visual token and text token, respectively. It outperforms Pixtral-12B and Llama3.2-11B, and is competitive against the best proprietary models on various multimodal tasks. We pre-train Aria from scratch following a 4-stage pipeline, which progressively equips the model with strong capabilities in language understanding, multimodal understanding, long context window, and instruction following. We open-source the model weights along with a codebase that facilitates easy adoptions and adaptations of Aria in real-world applications.
Abstract:Automatic chart understanding is crucial for content comprehension and document parsing. Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in chart understanding through domain-specific alignment and fine-tuning. However, the application of alignment training within the chart domain is still underexplored. To address this, we propose ChartMoE, which employs the mixture of expert (MoE) architecture to replace the traditional linear projector to bridge the modality gap. Specifically, we train multiple linear connectors through distinct alignment tasks, which are utilized as the foundational initialization parameters for different experts. Additionally, we introduce ChartMoE-Align, a dataset with over 900K chart-table-JSON-code quadruples to conduct three alignment tasks (chart-table/JSON/code). Combined with the vanilla connector, we initialize different experts in four distinct ways and adopt high-quality knowledge learning to further refine the MoE connector and LLM parameters. Extensive experiments demonstrate the effectiveness of the MoE connector and our initialization strategy, e.g., ChartMoE improves the accuracy of the previous state-of-the-art from 80.48% to 84.64% on the ChartQA benchmark.
Abstract:In this paper, we explore a critical yet under-investigated issue: how to learn robust and well-generalized 3D representation from pre-trained vision language models such as CLIP. Previous works have demonstrated that cross-modal distillation can provide rich and useful knowledge for 3D data. However, like most deep learning models, the resultant 3D learning network is still vulnerable to adversarial attacks especially the iterative attack. In this work, we propose Dual Denoising, a novel framework for learning robust and well-generalized 3D representations from CLIP. It combines a denoising-based proxy task with a novel feature denoising network for 3D pre-training. Additionally, we propose utilizing parallel noise inference to enhance the generalization of point cloud features under cross domain settings. Experiments show that our model can effectively improve the representation learning performance and adversarial robustness of the 3D learning network under zero-shot settings without adversarial training. Our code is available at https://github.com/luoshuqing2001/Dual_Denoising.
Abstract:The recent advancements in Text-to-Video Artificial Intelligence Generated Content (AIGC) have been remarkable. Compared with traditional videos, the assessment of AIGC videos encounters various challenges: visual inconsistency that defy common sense, discrepancies between content and the textual prompt, and distribution gap between various generative models, etc. Target at these challenges, in this work, we categorize the assessment of AIGC video quality into three dimensions: visual harmony, video-text consistency, and domain distribution gap. For each dimension, we design specific modules to provide a comprehensive quality assessment of AIGC videos. Furthermore, our research identifies significant variations in visual quality, fluidity, and style among videos generated by different text-to-video models. Predicting the source generative model can make the AIGC video features more discriminative, which enhances the quality assessment performance. The proposed method was used in the third-place winner of the NTIRE 2024 Quality Assessment for AI-Generated Content - Track 2 Video, demonstrating its effectiveness. Code will be available at https://github.com/Coobiw/TriVQA.
Abstract:AI-Generated Images (AGIs) have inherent multimodal nature. Unlike traditional image quality assessment (IQA) on natural scenarios, AGIs quality assessment (AGIQA) takes the correspondence of image and its textual prompt into consideration. This is coupled in the ground truth score, which confuses the unimodal IQA methods. To solve this problem, we introduce IP-IQA (AGIs Quality Assessment via Image and Prompt), a multimodal framework for AGIQA via corresponding image and prompt incorporation. Specifically, we propose a novel incremental pretraining task named Image2Prompt for better understanding of AGIs and their corresponding textual prompts. An effective and efficient image-prompt fusion module, along with a novel special [QA] token, are also applied. Both are plug-and-play and beneficial for the cooperation of image and its corresponding prompt. Experiments demonstrate that our IP-IQA achieves the state-of-the-art on AGIQA-1k and AGIQA-3k datasets. Code will be available.