Abstract:Modern search systems play a crucial role in facilitating information acquisition. Traditional search engines typically rely on a cascaded architecture, where results are retrieved through recall, pre-ranking, and ranking stages. The complexity of designing and maintaining multiple modules makes it difficult to achieve holistic performance gains. Recent advances in generative recommendation have motivated the exploration of unified generative search as an alternative. However, existing approaches are not genuinely end-to-end: they typically train an item encoder to tokenize candidates first and then optimize a generator separately, leading to objective inconsistency and limited generalization. To address these limitations, we propose UniSearch, a unified generative search framework for Kuaishou Search. UniSearch replaces the cascaded pipeline with an end-to-end architecture that integrates a Search Generator and a Video Encoder. The Generator produces semantic identifiers of relevant items given a user query, while the Video Encoder learns latent item embeddings and provides their tokenized representations. A unified training framework jointly optimizes both components, enabling mutual enhancement and improving representation quality and generation accuracy. Furthermore, we introduce Search Preference Optimization (SPO), which leverages a reward model and real user feedback to better align generation with user preferences. Extensive experiments on industrial-scale datasets, together with online A/B testing in both short-video and live search scenarios, demonstrate the strong effectiveness and deployment potential of UniSearch. Notably, its deployment in live search yields the largest single-experiment improvement in recent years of our product's history, highlighting its practical value for real-world applications.
Abstract:This paper studies decentralized optimization problem $f(\mathbf{x})=\frac{1}{m}\sum_{i=1}^m f_i(\mathbf{x})$, where each local function has the form of $f_i(\mathbf{x}) = {\mathbb E}\left[F(\mathbf{x};{\xi}_i)\right]$ which is $(L_0,L_1)$-smooth but possibly nonconvex and the random variable ${\xi}_i$ follows distribution ${\mathcal D}_i$. We propose a novel algorithm called decentralized normalized stochastic gradient descent (DNSGD), which can achieve the $\epsilon$-stationary point on each local agent. We present a new framework for analyzing decentralized first-order methods in the relaxed smooth setting, based on the Lyapunov function related to the product of the gradient norm and the consensus error. The analysis shows upper bounds on sample complexity of ${\mathcal O}(m^{-1}(L_f\sigma^2\Delta_f\epsilon^{-4} + \sigma^2\epsilon^{-2} + L_f^{-2}L_1^3\sigma^2\Delta_f\epsilon^{-1} + L_f^{-2}L_1^2\sigma^2))$ per agent and communication complexity of $\tilde{\mathcal O}((L_f\epsilon^{-2} + L_1\epsilon^{-1})\gamma^{-1/2}\Delta_f)$, where $L_f=L_0 +L_1\zeta$, $\sigma^2$ is the variance of the stochastic gradient, $\Delta_f$ is the initial optimal function value gap, $\gamma$ is the spectral gap of the network, and $\zeta$ is the degree of the gradient dissimilarity. In the special case of $L_1=0$, the above results (nearly) match the lower bounds on decentralized nonconvex optimization in the standard smooth setting. We also conduct numerical experiments to show the empirical superiority of our method.
Abstract:Large Language Models (LLMs), when paired with prompt-based tasks, have significantly reduced data annotation costs and reliance on human annotators. However, evaluating the quality of their annotations remains challenging in dynamic, unsupervised environments where oracle feedback is scarce and conventional methods fail. To address this challenge, we propose a novel agentic annotation paradigm, where a student model collaborates with a noisy teacher (the LLM) to assess and refine annotation quality without relying on oracle feedback. The student model, acting as an unsupervised feedback mechanism, employs a user preference-based majority voting strategy to evaluate the consistency of the LLM outputs. To systematically measure the reliability of LLM-generated annotations, we introduce the Consistent and Inconsistent (CAI) Ratio, a novel unsupervised evaluation metric. The CAI Ratio not only quantifies the annotation quality of the noisy teacher under limited user preferences but also plays a critical role in model selection, enabling the identification of robust LLMs in dynamic, unsupervised environments. Applied to ten open-domain NLP datasets across four LLMs, the CAI Ratio demonstrates a strong positive correlation with LLM accuracy, establishing it as an essential tool for unsupervised evaluation and model selection in real-world settings.
Abstract:Recently, rectified flow (RF)-based models have achieved state-of-the-art performance in many areas for both the multi-step and one-step generation. However, only a few theoretical works analyze the discretization complexity of RF-based models. Existing works either focus on flow-based models with stochastic samplers or establish complexity results that exhibit exponential dependence on problem parameters. In this work, under the realistic bounded support assumption, we prove the first polynomial discretization complexity for multi-step and one-step RF-based models with a deterministic sampler simultaneously. For the multi-step setting, inspired by the predictor-corrector framework of diffusion models, we introduce a Langevin process as a corrector and show that RF-based models can achieve better polynomial discretization complexity than diffusion models. To achieve this result, we conduct a detailed analysis of the RF-based model and explain why it is better than previous popular models, such as variance preserving (VP) and variance exploding (VE)-based models. Based on the observation of multi-step RF-based models, we further provide the first polynomial discretization complexity result for one-step RF-based models, improving upon prior results for one-step diffusion-based models. These findings mark the first step toward theoretically understanding the impressive empirical performance of RF-based models in both multi-step and one-step generation.
Abstract:Large language model (LLM) agents often struggle in environments where rules and required domain knowledge frequently change, such as regulatory compliance and user risk screening. Current approaches, like offline fine-tuning and standard prompting, are insufficient because they cannot effectively adapt to new knowledge during actual operation. To address this limitation, we propose the Adaptive Reflective Interactive Agent (ARIA), an LLM agent framework designed specifically to continuously learn updated domain knowledge at test time. ARIA assesses its own uncertainty through structured self-dialogue, proactively identifying knowledge gaps and requesting targeted explanations or corrections from human experts. It then systematically updates an internal, timestamped knowledge repository with provided human guidance, detecting and resolving conflicting or outdated knowledge through comparisons and clarification queries. We evaluate ARIA on the realistic customer due diligence name screening task on TikTok Pay, alongside publicly available dynamic knowledge tasks. Results demonstrate significant improvements in adaptability and accuracy compared to baselines using standard offline fine-tuning and existing self-improving agents. ARIA is deployed within TikTok Pay serving over 150 million monthly active users, confirming its practicality and effectiveness for operational use in rapidly evolving environments.
Abstract:In-context learning (ICL), a predominant trend in instruction learning, aims at enhancing the performance of large language models by providing clear task guidance and examples, improving their capability in task understanding and execution. This paper investigates ICL on Large Vision-Language Models (LVLMs) and explores the policies of multi-modal demonstration selection. Existing research efforts in ICL face significant challenges: First, they rely on pre-defined demonstrations or heuristic selecting strategies based on human intuition, which are usually inadequate for covering diverse task requirements, leading to sub-optimal solutions; Second, individually selecting each demonstration fails in modeling the interactions between them, resulting in information redundancy. Unlike these prevailing efforts, we propose a new exploration-exploitation reinforcement learning framework, which explores policies to fuse multi-modal information and adaptively select adequate demonstrations as an integrated whole. The framework allows LVLMs to optimize themselves by continually refining their demonstrations through self-exploration, enabling the ability to autonomously identify and generate the most effective selection policies for in-context learning. Experimental results verify the superior performance of our approach on four Visual Question-Answering (VQA) datasets, demonstrating its effectiveness in enhancing the generalization capability of few-shot LVLMs.
Abstract:The U-shaped encoder-decoder architecture with skip connections has become a prevailing paradigm in medical image segmentation due to its simplicity and effectiveness. While many recent works aim to improve this framework by designing more powerful encoders and decoders, employing advanced convolutional neural networks (CNNs) for local feature extraction, Transformers or state space models (SSMs) such as Mamba for global context modeling, or hybrid combinations of both, these methods often struggle to fully utilize pretrained vision backbones (e.g., ResNet, ViT, VMamba) due to structural mismatches. To bridge this gap, we introduce ACM-UNet, a general-purpose segmentation framework that retains a simple UNet-like design while effectively incorporating pretrained CNNs and Mamba models through a lightweight adapter mechanism. This adapter resolves architectural incompatibilities and enables the model to harness the complementary strengths of CNNs and SSMs-namely, fine-grained local detail extraction and long-range dependency modeling. Additionally, we propose a hierarchical multi-scale wavelet transform module in the decoder to enhance feature fusion and reconstruction fidelity. Extensive experiments on the Synapse and ACDC benchmarks demonstrate that ACM-UNet achieves state-of-the-art performance while remaining computationally efficient. Notably, it reaches 85.12% Dice Score and 13.89mm HD95 on the Synapse dataset with 17.93G FLOPs, showcasing its effectiveness and scalability. Code is available at: https://github.com/zyklcode/ACM-UNet.
Abstract:Generalized category discovery (GCD) is essential for improving deep learning models' robustness in open-world scenarios by clustering unlabeled data containing both known and novel categories. Traditional GCD methods focus on minimizing intra-cluster variations, often sacrificing manifold capacity, which limits the richness of intra-class representations. In this paper, we propose a novel approach, Maximum Token Manifold Capacity (MTMC), that prioritizes maximizing the manifold capacity of class tokens to preserve the diversity and complexity of data. MTMC leverages the nuclear norm of singular values as a measure of manifold capacity, ensuring that the representation of samples remains informative and well-structured. This method enhances the discriminability of clusters, allowing the model to capture detailed semantic features and avoid the loss of critical information during clustering. Through theoretical analysis and extensive experiments on coarse- and fine-grained datasets, we demonstrate that MTMC outperforms existing GCD methods, improving both clustering accuracy and the estimation of category numbers. The integration of MTMC leads to more complete representations, better inter-class separability, and a reduction in dimensional collapse, establishing MTMC as a vital component for robust open-world learning. Code is in github.com/lytang63/MTMC.
Abstract:Human mesh recovery (HMR) from a single image is inherently ill-posed due to depth ambiguity and occlusions. Probabilistic methods have tried to solve this by generating numerous plausible 3D human mesh predictions, but they often exhibit misalignment with 2D image observations and weak robustness to in-the-wild images. To address these issues, we propose ADHMR, a framework that Aligns a Diffusion-based HMR model in a preference optimization manner. First, we train a human mesh prediction assessment model, HMR-Scorer, capable of evaluating predictions even for in-the-wild images without 3D annotations. We then use HMR-Scorer to create a preference dataset, where each input image has a pair of winner and loser mesh predictions. This dataset is used to finetune the base model using direct preference optimization. Moreover, HMR-Scorer also helps improve existing HMR models by data cleaning, even with fewer training samples. Extensive experiments show that ADHMR outperforms current state-of-the-art methods. Code is available at: https://github.com/shenwenhao01/ADHMR.
Abstract:This paper addresses fine-tuning Large Language Models (LLMs) for function calling tasks when real user interaction data is unavailable. In digital content creation tools, where users express their needs through natural language queries that must be mapped to API calls, the lack of real-world task-specific data and privacy constraints for training on it necessitate synthetic data generation. Existing approaches to synthetic data generation fall short in diversity and complexity, failing to replicate real-world data distributions and leading to suboptimal performance after LLM fine-tuning. We present a novel router-based architecture that leverages domain resources like content metadata and structured knowledge graphs, along with text-to-text and vision-to-text language models to generate high-quality synthetic training data. Our architecture's flexible routing mechanism enables synthetic data generation that matches observed real-world distributions, addressing a fundamental limitation of traditional approaches. Evaluation on a comprehensive set of real user queries demonstrates significant improvements in both function classification accuracy and API parameter selection. Models fine-tuned with our synthetic data consistently outperform traditional approaches, establishing new benchmarks for function calling tasks.