Abstract:Domain specific question answering is an evolving field that requires specialized solutions to address unique challenges. In this paper, we show that a hybrid approach combining a fine-tuned dense retriever with keyword based sparse search methods significantly enhances performance. Our system leverages a linear combination of relevance signals, including cosine similarity from dense retrieval, BM25 scores, and URL host matching, each with tunable boost parameters. Experimental results indicate that this hybrid method outperforms our single-retriever system, achieving improved accuracy while maintaining robust contextual grounding. These findings suggest that integrating multiple retrieval methodologies with weighted scoring effectively addresses the complexities of domain specific question answering in enterprise settings.
Abstract:Semantic inpainting is the task of inferring missing pixels in an image given surrounding pixels and high level image semantics. Most semantic inpainting algorithms are deterministic: given an image with missing regions, a single inpainted image is generated. However, there are often several plausible inpaintings for a given missing region. In this paper, we propose a method to perform probabilistic semantic inpainting by building a model, based on PixelCNNs, that learns a distribution of images conditioned on a subset of visible pixels. Experiments on the MNIST and CelebA datasets show that our method produces diverse and realistic inpaintings. Further, our model also estimates the likelihood of each sample which we show correlates well with the realism of the generated inpaintings.