Xidian University, China
Abstract:The task of partial scene text retrieval involves localizing and searching for text instances that are the same or similar to a given query text from an image gallery. However, existing methods can only handle text-line instances, leaving the problem of searching for partial patches within these text-line instances unsolved due to a lack of patch annotations in the training data. To address this issue, we propose a network that can simultaneously retrieve both text-line instances and their partial patches. Our method embeds the two types of data (query text and scene text instances) into a shared feature space and measures their cross-modal similarities. To handle partial patches, our proposed approach adopts a Multiple Instance Learning (MIL) approach to learn their similarities with query text, without requiring extra annotations. However, constructing bags, which is a standard step of conventional MIL approaches, can introduce numerous noisy samples for training, and lower inference speed. To address this issue, we propose a Ranking MIL (RankMIL) approach to adaptively filter those noisy samples. Additionally, we present a Dynamic Partial Match Algorithm (DPMA) that can directly search for the target partial patch from a text-line instance during the inference stage, without requiring bags. This greatly improves the search efficiency and the performance of retrieving partial patches. The source code and dataset are available at https://github.com/lanfeng4659/PSTR.
Abstract:Learners sharing similar implicit cognitive states often display comparable observable problem-solving performances. Leveraging collaborative connections among such similar learners proves valuable in comprehending human learning. Motivated by the success of collaborative modeling in various domains, such as recommender systems, we aim to investigate how collaborative signals among learners contribute to the diagnosis of human cognitive states (i.e., knowledge proficiency) in the context of intelligent education. The primary challenges lie in identifying implicit collaborative connections and disentangling the entangled cognitive factors of learners for improved explainability and controllability in learner Cognitive Diagnosis (CD). However, there has been no work on CD capable of simultaneously modeling collaborative and disentangled cognitive states. To address this gap, we present Coral, a Collaborative cognitive diagnosis model with disentangled representation learning. Specifically, Coral first introduces a disentangled state encoder to achieve the initial disentanglement of learners' states. Subsequently, a meticulously designed collaborative representation learning procedure captures collaborative signals. It dynamically constructs a collaborative graph of learners by iteratively searching for optimal neighbors in a context-aware manner. Using the constructed graph, collaborative information is extracted through node representation learning. Finally, a decoding process aligns the initial cognitive states and collaborative states, achieving co-disentanglement with practice performance reconstructions. Extensive experiments demonstrate the superior performance of Coral, showcasing significant improvements over state-of-the-art methods across several real-world datasets. Our code is available at https://github.com/bigdata-ustc/Coral.
Abstract:Preference tuning of large language models (LLMs) relies on high-quality human preference data, which is often expensive and time-consuming to gather. While existing methods can use trained reward models or proprietary model as judges for preference annotation, they have notable drawbacks: training reward models remain dependent on initial human data, and using proprietary model imposes license restrictions that inhibits commercial usage. In this paper, we introduce customized density ratio (CDR) that leverages open-source LLMs for data annotation, offering an accessible and effective solution. Our approach uses the log-density ratio between a well-aligned LLM and a less aligned LLM as a reward signal. We explores 221 different LLMs pairs and empirically demonstrate that increasing the performance gap between paired LLMs correlates with better reward generalization. Furthermore, we show that tailoring the density ratio reward function with specific criteria and preference exemplars enhances performance across domains and within target areas. In our experiment using density ratio from a pair of Mistral-7B models, CDR achieves a RewardBench score of 82.6, outperforming the best in-class trained reward functions and demonstrating competitive performance against SoTA models in Safety (91.0) and Reasoning (88.0) domains. We use CDR to annotate an on-policy preference dataset with which we preference tune Llama-3-8B-Instruct with SimPO. The final model achieves a 37.4% (+15.1%) win rate on ArenaHard and a 40.7% (+17.8%) win rate on Length-Controlled AlpacaEval 2.0, along with a score of 8.0 on MT-Bench.
Abstract:In this paper we present a novel method for efficient and effective 3D surface reconstruction in open scenes. Existing Neural Radiance Fields (NeRF) based works typically require extensive training and rendering time due to the adopted implicit representations. In contrast, 3D Gaussian splatting (3DGS) uses an explicit and discrete representation, hence the reconstructed surface is built by the huge number of Gaussian primitives, which leads to excessive memory consumption and rough surface details in sparse Gaussian areas. To address these issues, we propose Gaussian Voxel Kernel Functions (GVKF), which establish a continuous scene representation based on discrete 3DGS through kernel regression. The GVKF integrates fast 3DGS rasterization and highly effective scene implicit representations, achieving high-fidelity open scene surface reconstruction. Experiments on challenging scene datasets demonstrate the efficiency and effectiveness of our proposed GVKF, featuring with high reconstruction quality, real-time rendering speed, significant savings in storage and training memory consumption.
Abstract:An unsolved issue in widely used methods such as Support Vector Data Description (SVDD) and Small Sphere and Large Margin SVM (SSLM) for anomaly detection is their nonconvexity, which hampers the analysis of optimal solutions in a manner similar to SVMs and limits their applicability in large-scale scenarios. In this paper, we introduce a novel convex SSLM formulation which has been demonstrated to revert to a convex quadratic programming problem for hyperparameter values of interest. Leveraging the convexity of our method, we derive numerous results that are unattainable with traditional nonconvex approaches. We conduct a thorough analysis of how hyperparameters influence the optimal solution, pointing out scenarios where optimal solutions can be trivially found and identifying instances of ill-posedness. Most notably, we establish connections between our method and traditional approaches, providing a clear determination of when the optimal solution is unique -- a task unachievable with traditional nonconvex methods. We also derive the {\nu}-property to elucidate the interactions between hyperparameters and the fractions of support vectors and margin errors in both positive and negative classes.
Abstract:Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior sequences. We revisit SR from a novel information-theoretic perspective and find that conventional sequential modeling methods fail to adequately capture the randomness and unpredictability of user behavior. Inspired by fuzzy information processing theory, this paper introduces the DDSR model, which uses fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests. Formally based on diffusion transition processes in discrete state spaces, which is unlike common diffusion models such as DDPM that operate in continuous domains. It is better suited for discrete data, using structured transitions instead of arbitrary noise introduction to avoid information loss. Additionally, to address the inefficiency of matrix transformations due to the vast discrete space, we use semantic labels derived from quantization or RQ-VAE to replace item IDs, enhancing efficiency and improving cold start issues. Testing on three public benchmark datasets shows that DDSR outperforms existing state-of-the-art methods in various settings, demonstrating its potential and effectiveness in handling SR tasks.
Abstract:Training generative models with differential privacy (DP) typically involves injecting noise into gradient updates or adapting the discriminator's training procedure. As a result, such approaches often struggle with hyper-parameter tuning and convergence. We consider the slicing privacy mechanism that injects noise into random low-dimensional projections of the private data, and provide strong privacy guarantees for it. These noisy projections are used for training generative models. To enable optimizing generative models using this DP approach, we introduce the smoothed-sliced $f$-divergence and show it enjoys statistical consistency. Moreover, we present a kernel-based estimator for this divergence, circumventing the need for adversarial training. Extensive numerical experiments demonstrate that our approach can generate synthetic data of higher quality compared with baselines. Beyond performance improvement, our method, by sidestepping the need for noisy gradients, offers data scientists the flexibility to adjust generator architecture and hyper-parameters, run the optimization over any number of epochs, and even restart the optimization process -- all without incurring additional privacy costs.
Abstract:Generating synthetic residential load data that can accurately represent actual electricity consumption patterns is crucial for effective power system planning and operation. The necessity for synthetic data is underscored by the inherent challenges associated with using real-world load data, such as privacy considerations and logistical complexities in large-scale data collection. In this work, we tackle the above-mentioned challenges by developing the Ensemble Recurrent Generative Adversarial Network (ERGAN) framework to generate high-fidelity synthetic residential load data. ERGAN leverages an ensemble of recurrent Generative Adversarial Networks, augmented by a loss function that concurrently takes into account adversarial loss and differences between statistical properties. Our developed ERGAN can capture diverse load patterns across various households, thereby enhancing the realism and diversity of the synthetic data generated. Comprehensive evaluations demonstrate that our method consistently outperforms established benchmarks in the synthetic generation of residential load data across various performance metrics including diversity, similarity, and statistical measures. The findings confirm the potential of ERGAN as an effective tool for energy applications requiring synthetic yet realistic load data. We also make the generated synthetic residential load patterns publicly available.
Abstract:Accurate short-term forecasts of passenger flow in metro systems under delay conditions are crucial for emergency response and service recovery, which pose significant challenges and are currently under-researched. Due to the rare occurrence of delay events, the limited sample size under delay condictions make it difficult for conventional models to effectively capture the complex impacts of delays on passenger flow, resulting in low forecasting accuracy. Recognizing the strengths of large language models (LLMs) in few-shot learning due to their powerful pre-training, contextual understanding, ability to perform zero-shot and few-shot reasoning, to address the issues that effectively generalize and adapt with minimal data, we propose a passenger flow forecasting framework under delay conditions that synthesizes an LLM with carefully designed prompt engineering. By Refining prompt design, we enable the LLM to understand delay event information and the pattern from historical passenger flow data, thus overcoming the challenges of passenger flow forecasting under delay conditions. The propmpt engineering in the framework consists of two main stages: systematic prompt generation and prompt refinement. In the prompt generation stage, multi-source data is transformed into descriptive texts understandable by the LLM and stored. In the prompt refinement stage, we employ the multidimensional Chain of Thought (CoT) method to refine the prompts. We verify the proposed framework by conducting experiments using real-world datasets specifically targeting passenger flow forecasting under delay conditions of Shenzhen metro in China. The experimental results demonstrate that the proposed model performs particularly well in forecasting passenger flow under delay conditions.
Abstract:A stable 3D object detection model based on BEV paradigm with temporal information is very important for autonomous driving systems. However, current temporal fusion model use convolutional layer or deformable self-attention is not conducive to the exchange of global information of BEV space and has more computational cost. Recently, a newly proposed based model specialized in processing sequence called mamba has shown great potential in multiple downstream task. In this work, we proposed a mamba2-based BEV 3D object detection model named MambaBEV. We also adapt an end to end self driving paradigm to test the performance of the model. Our work performs pretty good results on nucences datasets:Our base version achieves 51.7% NDS. Our code will be available soon.