Xidian University, China
Abstract:In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
Abstract:Visual token compression is widely used to accelerate large vision-language models (LVLMs) by pruning or merging visual tokens, yet its adversarial robustness remains unexplored. We show that existing encoder-based attacks can substantially overestimate the robustness of compressed LVLMs, due to an optimization-inference mismatch: perturbations are optimized on the full-token representation, while inference is performed through a token-compression bottleneck. To address this gap, we propose the Compression-AliGnEd attack (CAGE), which aligns perturbation optimization with compression inference without assuming access to the deployed compression mechanism or its token budget. CAGE combines (i) expected feature disruption, which concentrates distortion on tokens likely to survive across plausible budgets, and (ii) rank distortion alignment, which actively aligns token distortions with rank scores to promote the retention of highly distorted evidence. Across diverse representative plug-and-play compression mechanisms and datasets, our results show that CAGE consistently achieves lower robust accuracy than the baseline. This work highlights that robustness assessments ignoring compression can be overly optimistic, calling for compression-aware security evaluation and defenses for efficient LVLMs.
Abstract:Multimodal learning aims to integrate complementary information from heterogeneous modalities, yet strong optimization alone does not guaranty well-structured representations. Even under carefully balanced training schemes, multimodal models often exhibit geometric pathologies, including intra-modal representation collapse and sample-level cross-modal inconsistency, which degrade both unimodal robustness and multimodal fusion. We identify representation geometry as a missing control axis in multimodal learning and propose \regName, a lightweight geometry-aware regularization framework. \regName enforces two complementary constraints on intermediate embeddings: an intra-modal dispersive regularization that promotes representation diversity, and an inter-modal anchoring regularization that bounds sample-level cross-modal drift without rigid alignment. The proposed regularizer is plug-and-play, requires no architectural modifications, and is compatible with various training paradigms. Extensive experiments across multiple multimodal benchmarks demonstrate consistent improvements in both multimodal and unimodal performance, showing that explicitly regulating representation geometry effectively mitigates modality trade-offs.
Abstract:RGB-to-RAW reconstruction, or the reverse modeling of a camera Image Signal Processing (ISP) pipeline, aims to recover high-fidelity RAW data from RGB images. Despite notable progress, existing learning-based methods typically treat this task as a direct regression objective and struggle with detail inconsistency and color deviation, due to the ill-posed nature of inverse ISP and the inherent information loss in quantized RGB images. To address these limitations, we pioneer a generative perspective by reformulating RGB-to-RAW reconstruction as a deterministic latent transport problem and introduce a novel framework named RAW-Flow, which leverages flow matching to learn a deterministic vector field in latent space, to effectively bridge the gap between RGB and RAW representations and enable accurate reconstruction of structural details and color information. To further enhance latent transport, we introduce a cross-scale context guidance module that injects hierarchical RGB features into the flow estimation process. Moreover, we design a dual-domain latent autoencoder with a feature alignment constraint to support the proposed latent transport framework, which jointly encodes RGB and RAW inputs while promoting stable training and high-fidelity reconstruction. Extensive experiments demonstrate that RAW-Flow outperforms state-of-the-art approaches both quantitatively and visually.
Abstract:Medical reasoning models remain constrained by parametric knowledge and are thus susceptible to forgetting and hallucinations. DeepResearch (DR) models ground outputs in verifiable evidence from tools and perform strongly in general domains, but their direct transfer to medical field yields relatively limited gains. We attribute this to two gaps: task characteristic and tool-use scaling. Medical questions require evidence interpretation in a knowledge-intensive clinical context; while general DR models can retrieve information, they often lack clinical-context reasoning and thus "find it but fail to use it," leaving performance limited by medical abilities. Moreover, in medical scenarios, blindly scaling tool-call can inject noisy context, derailing sensitive medical reasoning and prompting repetitive evidence-seeking along incorrect paths. Therefore, we propose DeepMed. For data, we deploy a multi-hop med-search QA synthesis method supporting the model to apply the DR paradigm in medical contexts. For training, we introduce a difficulty-aware turn-penalty to suppress excessive tool-call growth. For inference, we bring a monitor to help validate hypotheses within a controlled number of steps and avoid context rot. Overall, on seven medical benchmarks, DeepMed improves its base model by 9.79\% on average and outperforms larger medical reasoning and DR models.
Abstract:Long-horizon egocentric video presents significant challenges for visual navigation due to viewpoint drift and the absence of persistent geometric context. Although recent vision-language models perform well on image and short-video reasoning, their spatial reasoning capability in long egocentric sequences remains limited. In this work, we study how explicit spatial signals influence VLM-based video understanding without modifying model architectures or inference procedures. We introduce Sanpo-D, a fine-grained re-annotation of the Google Sanpo dataset, and benchmark multiple VLMs on navigation-oriented spatial queries. To examine input-level inductive bias, we further fuse depth maps with RGB frames and evaluate their impact on spatial reasoning. Our results reveal a trade-off between general-purpose accuracy and spatial specialization, showing that depth-aware and spatially grounded representations can improve performance on safety-critical tasks such as pedestrian and obstruction detection.
Abstract:Automated clinical diagnosis remains a core challenge in medical AI, which usually requires models to integrate multi-modal data and reason across complex, case-specific contexts. Although recent methods have advanced medical report generation (MRG) and visual question answering (VQA) with medical vision-language models (VLMs), these methods, however, predominantly operate under a sample-isolated inference paradigm, as such processing cases independently without access to longitudinal electronic health records (EHRs) or structurally related patient examples. This paradigm limits reasoning to image-derived information alone, which ignores external complementary medical evidence for potentially more accurate diagnosis. To overcome this limitation, we propose \textbf{HyperWalker}, a \textit{Deep Diagnosis} framework that reformulates clinical reasoning via dynamic hypergraphs and test-time training. First, we construct a dynamic hypergraph, termed \textbf{iBrochure}, to model the structural heterogeneity of EHR data and implicit high-order associations among multimodal clinical information. Within this hypergraph, a reinforcement learning agent, \textbf{Walker}, navigates to and identifies optimal diagnostic paths. To ensure comprehensive coverage of diverse clinical characteristics in test samples, we incorporate a \textit{linger mechanism}, a multi-hop orthogonal retrieval strategy that iteratively selects clinically complementary neighborhood cases reflecting distinct clinical attributes. Experiments on MRG with MIMIC and medical VQA on EHRXQA demonstrate that HyperWalker achieves state-of-the-art performance. Code is available at: https://github.com/Bean-Young/HyperWalker
Abstract:The reliability of data-driven applications in electric vehicle (EV) infrastructure, such as charging demand forecasting, hinges on the availability of complete, high-quality charging data. However, real-world EV datasets are often plagued by missing records, and existing imputation methods are ill-equipped for the complex, multimodal context of charging data, often relying on a restrictive one-model-per-station paradigm that ignores valuable inter-station correlations. To address these gaps, we develop a novel PRobabilistic variational imputation framework that leverages the power of large lAnguage models and retrIeval-augmented Memory (PRAIM). PRAIM employs a pre-trained language model to encode heterogeneous data, spanning time-series demand, calendar features, and geospatial context, into a unified, semantically rich representation. This is dynamically fortified by retrieval-augmented memory that retrieves relevant examples from the entire charging network, enabling a single, unified imputation model empowered by variational neural architecture to overcome data sparsity. Extensive experiments on four public datasets demonstrate that PRAIM significantly outperforms established baselines in both imputation accuracy and its ability to preserve the original data's statistical distribution, leading to substantial improvements in downstream forecasting performance.
Abstract:Large Language Models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial ``jailbreak'' attacks designed to bypass safety guardrails. Current safety alignment methods depend heavily on static external red teaming, utilizing fixed defense prompts or pre-collected adversarial datasets. This leads to a rigid defense that overfits known patterns and fails to generalize to novel, sophisticated threats. To address this critical limitation, we propose empowering the model to be its own red teamer, capable of achieving autonomous and evolving adversarial attacks. Specifically, we introduce Safety Self- Play (SSP), a system that utilizes a single LLM to act concurrently as both the Attacker (generating jailbreaks) and the Defender (refusing harmful requests) within a unified Reinforcement Learning (RL) loop, dynamically evolving attack strategies to uncover vulnerabilities while simultaneously strengthening defense mechanisms. To ensure the Defender effectively addresses critical safety issues during the self-play, we introduce an advanced Reflective Experience Replay Mechanism, which uses an experience pool accumulated throughout the process. The mechanism employs a Upper Confidence Bound (UCB) sampling strategy to focus on failure cases with low rewards, helping the model learn from past hard mistakes while balancing exploration and exploitation. Extensive experiments demonstrate that our SSP approach autonomously evolves robust defense capabilities, significantly outperforming baselines trained on static adversarial datasets and establishing a new benchmark for proactive safety alignment.
Abstract:From Vision-Language-Action (VLA) systems to robotics, existing egocentric datasets primarily focus on action recognition tasks, while largely overlooking the inherent role of motion analysis in sports and other fast-movement scenarios. To bridge this gap, we propose a real-time motion focus recognition method that estimates the subject's locomotion intention from any egocentric video. Our approach leverages the foundation model for camera pose estimation and introduces system-level optimizations to enable efficient and scalable inference. Evaluated on a collected egocentric action dataset, our method achieves real-time performance with manageable memory consumption through a sliding batch inference strategy. This work makes motion-centric analysis practical for edge deployment and offers a complementary perspective to existing egocentric studies on sports and fast-movement activities.