Abstract:Understanding travelers' route choices can help policymakers devise optimal operational and planning strategies for both normal and abnormal circumstances. However, existing choice modeling methods often rely on predefined assumptions and struggle to capture the dynamic and adaptive nature of travel behavior. Recently, Large Language Models (LLMs) have emerged as a promising alternative, demonstrating remarkable ability to replicate human-like behaviors across various fields. Despite this potential, their capacity to accurately simulate human route choice behavior in transportation contexts remains doubtful. To satisfy this curiosity, this paper investigates the potential of LLMs for route choice modeling by introducing an LLM-empowered agent, "LLMTraveler." This agent integrates an LLM as its core, equipped with a memory system that learns from past experiences and makes decisions by balancing retrieved data and personality traits. The study systematically evaluates the LLMTraveler's ability to replicate human-like decision-making through two stages: (1) analyzing its route-switching behavior in single origin-destination (OD) pair congestion game scenarios, where it demonstrates patterns align with laboratory data but are not fully explained by traditional models, and (2) testing its capacity to model day-to-day (DTD) adaptive learning behaviors on the Ortuzar and Willumsen (OW) network, producing results comparable to Multinomial Logit (MNL) and Reinforcement Learning (RL) models. These experiments demonstrate that the framework can partially replicate human-like decision-making in route choice while providing natural language explanations for its decisions. This capability offers valuable insights for transportation policymaking, such as simulating traveler responses to new policies or changes in the network.
Abstract:Crash data is often greatly imbalanced, with the majority of crashes being non-fatal crashes, and only a small number being fatal crashes due to their rarity. Such data imbalance issue poses a challenge for crash severity modeling since it struggles to fit and interpret fatal crash outcomes with very limited samples. Usually, such data imbalance issues are addressed by data resampling methods, such as under-sampling and over-sampling techniques. However, most traditional and deep learning-based data resampling methods, such as synthetic minority oversampling technique (SMOTE) and generative Adversarial Networks (GAN) are designed dedicated to processing continuous variables. Though some resampling methods have improved to handle both continuous and discrete variables, they may have difficulties in dealing with the collapse issue associated with sparse discrete risk factors. Moreover, there is a lack of comprehensive studies that compare the performance of various resampling methods in crash severity modeling. To address the aforementioned issues, the current study proposes a crash data generation method based on the Conditional Tabular GAN. After data balancing, a crash severity model is employed to estimate the performance of classification and interpretation. A comparative study is conducted to assess classification accuracy and distribution consistency of the proposed generation method using a 4-year imbalanced crash dataset collected in Washington State, U.S. Additionally, Monte Carlo simulation is employed to estimate the performance of parameter and probability estimation in both two- and three-class imbalance scenarios. The results indicate that using synthetic data generated by CTGAN-RU for crash severity modeling outperforms using original data or synthetic data generated by other resampling methods.