Abstract:Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon.
Abstract:Conventional ASR systems use frame-level phoneme posterior to conduct force-alignment~(FA) and provide timestamps, while end-to-end ASR systems especially AED based ones are short of such ability. This paper proposes to perform timestamp prediction~(TP) while recognizing by utilizing continuous integrate-and-fire~(CIF) mechanism in non-autoregressive ASR model - Paraformer. Foucing on the fire place bias issue of CIF, we conduct post-processing strategies including fire-delay and silence insertion. Besides, we propose to use scaled-CIF to smooth the weights of CIF output, which is proved beneficial for both ASR and TP task. Accumulated averaging shift~(AAS) and diarization error rate~(DER) are adopted to measure the quality of timestamps and we compare these metrics of proposed system and conventional hybrid force-alignment system. The experiment results over manually-marked timestamps testset show that the proposed optimization methods significantly improve the accuracy of CIF timestamps, reducing 66.7\% and 82.1\% of AAS and DER respectively. Comparing to Kaldi force-alignment trained with the same data, optimized CIF timestamps achieved 12.3\% relative AAS reduction.