Abstract:This study focuses on emotion-sensitive spoken dialogue in human-machine speech interaction. With the advancement of Large Language Models (LLMs), dialogue systems can handle multimodal data, including audio. Recent models have enhanced the understanding of complex audio signals through the integration of various audio events. However, they are unable to generate appropriate responses based on emotional speech. To address this, we introduce the Emotional chat Model (E-chat), a novel spoken dialogue system capable of comprehending and responding to emotions conveyed from speech. This model leverages an emotion embedding extracted by a speech encoder, combined with LLMs, enabling it to respond according to different emotional contexts. Additionally, we introduce the E-chat200 dataset, designed explicitly for emotion-sensitive spoken dialogue. In various evaluation metrics, E-chat consistently outperforms baseline LLMs, demonstrating its potential in emotional comprehension and human-machine interaction.
Abstract:This paper introduces FunASR, an open-source speech recognition toolkit designed to bridge the gap between academic research and industrial applications. FunASR offers models trained on large-scale industrial corpora and the ability to deploy them in applications. The toolkit's flagship model, Paraformer, is a non-autoregressive end-to-end speech recognition model that has been trained on a manually annotated Mandarin speech recognition dataset that contains 60,000 hours of speech. To improve the performance of Paraformer, we have added timestamp prediction and hotword customization capabilities to the standard Paraformer backbone. In addition, to facilitate model deployment, we have open-sourced a voice activity detection model based on the Feedforward Sequential Memory Network (FSMN-VAD) and a text post-processing punctuation model based on the controllable time-delay Transformer (CT-Transformer), both of which were trained on industrial corpora. These functional modules provide a solid foundation for building high-precision long audio speech recognition services. Compared to other models trained on open datasets, Paraformer demonstrates superior performance.
Abstract:Punctuation prediction for automatic speech recognition (ASR) output transcripts plays a crucial role for improving the readability of the ASR transcripts and for improving the performance of downstream natural language processing applications. However, achieving good performance on punctuation prediction often requires large amounts of labeled speech transcripts, which is expensive and laborious. In this paper, we propose a Discriminative Self-Training approach with weighted loss and discriminative label smoothing to exploit unlabeled speech transcripts. Experimental results on the English IWSLT2011 benchmark test set and an internal Chinese spoken language dataset demonstrate that the proposed approach achieves significant improvement on punctuation prediction accuracy over strong baselines including BERT, RoBERTa, and ELECTRA models. The proposed Discriminative Self-Training approach outperforms the vanilla self-training approach. We establish a new state-of-the-art (SOTA) on the IWSLT2011 test set, outperforming the current SOTA model by 1.3% absolute gain on F$_1$.
Abstract:With the increased applications of automatic speech recognition (ASR) in recent years, it is essential to automatically insert punctuation marks and remove disfluencies in transcripts, to improve the readability of the transcripts as well as the performance of subsequent applications, such as machine translation, dialogue systems, and so forth. In this paper, we propose a Controllable Time-delay Transformer (CT-Transformer) model that jointly completes the punctuation prediction and disfluency detection tasks in real time. The CT-Transformer model facilitates freezing partial outputs with controllable time delay to fulfill the real-time constraints in partial decoding required by subsequent applications. We further propose a fast decoding strategy to minimize latency while maintaining competitive performance. Experimental results on the IWSLT2011 benchmark dataset and an in-house Chinese annotated dataset demonstrate that the proposed approach outperforms the previous state-of-the-art models on F-scores and achieves a competitive inference speed.