Abstract:Deep Neural Networks are increasingly leveraging sparsity to reduce the scaling up of model parameter size. However, reducing wall-clock time through sparsity and pruning remains challenging due to irregular memory access patterns, leading to frequent cache misses. In this paper, we present NPU Vector Runahead (NVR), a prefetching mechanism tailored for NPUs to address cache miss problems in sparse DNN workloads. Rather than optimising memory patterns with high overhead and poor portability, NVR adapts runahead execution to the unique architecture of NPUs. NVR provides a general micro-architectural solution for sparse DNN workloads without requiring compiler or algorithmic support, operating as a decoupled, speculative, lightweight hardware sub-thread alongside the NPU, with minimal hardware overhead (under 5%). NVR achieves an average 90% reduction in cache misses compared to SOTA prefetching in general-purpose processors, delivering 4x average speedup on sparse workloads versus NPUs without prefetching. Moreover, we investigate the advantages of incorporating a small cache (16KB) into the NPU combined with NVR. Our evaluation shows that expanding this modest cache delivers 5x higher performance benefits than increasing the L2 cache size by the same amount.
Abstract:The accurate assessment of sperm morphology is crucial in andrological diagnostics, where the segmentation of sperm images presents significant challenges. Existing approaches frequently rely on large annotated datasets and often struggle with the segmentation of overlapping sperm and the presence of dye impurities. To address these challenges, this paper first analyzes the issue of overlapping sperm tails from a geometric perspective and introduces a novel clustering algorithm, Con2Dis, which effectively segments overlapping tails by considering three essential factors: CONnectivity, CONformity, and DIStance. Building on this foundation, we propose an unsupervised method, SpeHeatal, designed for the comprehensive segmentation of the SPErm HEAd and TAiL. SpeHeatal employs the Segment Anything Model(SAM) to generate masks for sperm heads while filtering out dye impurities, utilizes Con2Dis to segment tails, and then applies a tailored mask splicing technique to produce complete sperm masks. Experimental results underscore the superior performance of SpeHeatal, particularly in handling images with overlapping sperm.
Abstract:Heuristics have achieved great success in solving combinatorial optimization problems (COPs). However, heuristics designed by humans require too much domain knowledge and testing time. Given the fact that Large Language Models (LLMs) possess strong capabilities to understand and generate content, and a knowledge base that covers various domains, which offer a novel way to automatically optimize heuristics. Therefore, we propose Planning of Heuristics (PoH), an optimization method that integrates the self-reflection of LLMs with the Monte Carlo Tree Search (MCTS), a well-known planning algorithm. PoH iteratively refines generated heuristics by evaluating their performance and providing improvement suggestions. Our method enables to iteratively evaluate the generated heuristics (states) and improve them based on the improvement suggestions (actions) and evaluation results (rewards), by effectively simulating future states to search for paths with higher rewards. In this paper, we apply PoH to solve the Traveling Salesman Problem (TSP) and the Flow Shop Scheduling Problem (FSSP). The experimental results show that PoH outperforms other hand-crafted heuristics and Automatic Heuristic Design (AHD) by other LLMs-based methods, and achieves the significant improvements and the state-of-the-art performance of our proposed method in automating heuristic optimization with LLMs to solve COPs.
Abstract:Empathetic dialogue is crucial for natural human-computer interaction, allowing the dialogue system to respond in a more personalized and emotionally aware manner, improving user satisfaction and engagement. The emergence of large language models (LLMs) has revolutionized dialogue generation by harnessing their powerful capabilities and shown its potential in multimodal domains. Many studies have integrated speech with text-based LLMs to take speech question as input and output text response. However, the lack of spoken question-answering datasets that include speech style information to supervised fine-tuning (SFT) limits the performance of these systems. As a result, while these systems excel at understanding speech content, they often struggle to generate empathetic responses. In response, we propose a novel approach that circumvents the need for question-answering data, called Listen, Perceive, and Express (LPE). Our method employs a two-stage training process, initially guiding the LLM to listen the content and perceive the emotional aspects of speech. Subsequently, we utilize Chain-of-Thought (CoT) prompting to unlock the model's potential for expressing empathetic responses based on listened spoken content and perceived emotional cues. We employ experiments to prove the effectiveness of proposed method. To our knowledge, this is the first attempt to leverage CoT for speech-based dialogue.
Abstract:The technology for generating music from textual descriptions has seen rapid advancements. However, evaluating text-to-music (TTM) systems remains a significant challenge, primarily due to the difficulty of balancing performance and cost with existing objective and subjective evaluation methods. In this paper, we propose an automatic assessment task for TTM models to align with human perception. To address the TTM evaluation challenges posed by the professional requirements of music evaluation and the complexity of the relationship between text and music, we collect MusicEval, the first generative music assessment dataset. This dataset contains 2,748 music clips generated by 31 advanced and widely used models in response to 384 text prompts, along with 13,740 ratings from 14 music experts. Furthermore, we design a CLAP-based assessment model built on this dataset, and our experimental results validate the feasibility of the proposed task, providing a valuable reference for future development in TTM evaluation. The dataset is available at https://www.aishelltech.com/AISHELL_7A.
Abstract:Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon.
Abstract:This study examined the viability of enhancing the prediction accuracy of artificial neural networks (ANNs) in image classification tasks by developing ANNs with evolution patterns similar to those of biological neural networks. ResNet is a widely used family of neural networks with both deep and wide variants; therefore, it was selected as the base model for our investigation. The aim of this study is to improve the image classification performance of ANNs via a novel approach inspired by the biological nervous system architecture of planarians, which comprises a brain and two nerve cords. We believe that the unique neural architecture of planarians offers valuable insights into the performance enhancement of ANNs. The proposed planarian neural architecture-based neural network was evaluated on the CIFAR-10 and CIFAR-100 datasets. Our results indicate that the proposed method exhibits higher prediction accuracy than the baseline neural network models in image classification tasks. These findings demonstrate the significant potential of biologically inspired neural network architectures in improving the performance of ANNs in a wide range of applications.
Abstract:Multimodal emotion recognition (MER), leveraging speech and text, has emerged as a pivotal domain within human-computer interaction, demanding sophisticated methods for effective multimodal integration. The challenge of aligning features across these modalities is significant, with most existing approaches adopting a singular alignment strategy. Such a narrow focus not only limits model performance but also fails to address the complexity and ambiguity inherent in emotional expressions. In response, this paper introduces a Multi-Granularity Cross-Modal Alignment (MGCMA) framework, distinguished by its comprehensive approach encompassing distribution-based, instance-based, and token-based alignment modules. This framework enables a multi-level perception of emotional information across modalities. Our experiments on IEMOCAP demonstrate that our proposed method outperforms current state-of-the-art techniques.
Abstract:The in-image machine translation task involves translating text embedded within images, with the translated results presented in image format. While this task has numerous applications in various scenarios such as film poster translation and everyday scene image translation, existing methods frequently neglect the aspect of consistency throughout this process. We propose the need to uphold two types of consistency in this task: translation consistency and image generation consistency. The former entails incorporating image information during translation, while the latter involves maintaining consistency between the style of the text-image and the original image, ensuring background integrity. To address these consistency requirements, we introduce a novel two-stage framework named HCIIT (High-Consistency In-Image Translation) which involves text-image translation using a multimodal multilingual large language model in the first stage and image backfilling with a diffusion model in the second stage. Chain of thought learning is utilized in the first stage to enhance the model's ability to leverage image information during translation. Subsequently, a diffusion model trained for style-consistent text-image generation ensures uniformity in text style within images and preserves background details. A dataset comprising 400,000 style-consistent pseudo text-image pairs is curated for model training. Results obtained on both curated test sets and authentic image test sets validate the effectiveness of our framework in ensuring consistency and producing high-quality translated images.
Abstract:This paper introduces Interleaved Speech-Text Language Model (IST-LM) for streaming zero-shot Text-to-Speech (TTS). Unlike many previous approaches, IST-LM is directly trained on interleaved sequences of text and speech tokens with a fixed ratio, eliminating the need for additional efforts in duration prediction and grapheme-to-phoneme alignment. The ratio of text chunk size to speech chunk size is crucial for the performance of IST-LM. To explore this, we conducted a comprehensive series of statistical analyses on the training data and performed correlation analysis with the final performance, uncovering several key factors: 1) the distance between speech tokens and their corresponding text tokens, 2) the number of future text tokens accessible to each speech token, and 3) the frequency of speech tokens precedes their corresponding text tokens. Experimental results demonstrate how to achieve an optimal streaming TTS system without complicated engineering optimization, which has a limited gap with the non-streaming system. IST-LM is conceptually simple and empirically powerful, paving the way for streaming TTS with minimal overhead while largely maintaining performance, showcasing broad prospects coupled with real-time text stream from LLMs.