Abstract:Existing Image Quality Assessment (IQA) methods achieve remarkable success in analyzing quality for overall image, but few works explore quality analysis for Regions of Interest (ROIs). The quality analysis of ROIs can provide fine-grained guidance for image quality improvement and is crucial for scenarios focusing on region-level quality. This paper proposes a novel network, SEAGULL, which can SEe and Assess ROIs quality with GUidance from a Large vision-Language model. SEAGULL incorporates a vision-language model (VLM), masks generated by Segment Anything Model (SAM) to specify ROIs, and a meticulously designed Mask-based Feature Extractor (MFE) to extract global and local tokens for specified ROIs, enabling accurate fine-grained IQA for ROIs. Moreover, this paper constructs two ROI-based IQA datasets, SEAGULL-100w and SEAGULL-3k, for training and evaluating ROI-based IQA. SEAGULL-100w comprises about 100w synthetic distortion images with 33 million ROIs for pre-training to improve the model's ability of regional quality perception, and SEAGULL-3k contains about 3k authentic distortion ROIs to enhance the model's ability to perceive real world distortions. After pre-training on SEAGULL-100w and fine-tuning on SEAGULL-3k, SEAGULL shows remarkable performance on fine-grained ROI quality assessment. Code and datasets are publicly available at the https://github.com/chencn2020/Seagull.
Abstract:Image editing involves a variety of complex tasks and requires efficient and precise manipulation techniques. In this paper, we present MagicQuill, an integrated image editing system that enables swift actualization of creative ideas. Our system features a streamlined yet functionally robust interface, allowing for the articulation of editing operations (e.g., inserting elements, erasing objects, altering color) with minimal input. These interactions are monitored by a multimodal large language model (MLLM) to anticipate editing intentions in real time, bypassing the need for explicit prompt entry. Finally, we apply a powerful diffusion prior, enhanced by a carefully learned two-branch plug-in module, to process editing requests with precise control. Experimental results demonstrate the effectiveness of MagicQuill in achieving high-quality image edits. Please visit https://magic-quill.github.io to try out our system.
Abstract:Retrieval-Augmented Generation (RAG) has been shown to improve knowledge capabilities and alleviate the hallucination problem of LLMs. The Web is a major source of external knowledge used in RAG systems, and many commercial systems such as ChatGPT and Perplexity have used Web search engines as their major retrieval systems. Typically, such RAG systems retrieve search results, download HTML sources of the results, and then extract plain texts from the HTML sources. Plain text documents or chunks are fed into the LLMs to augment the generation. However, much of the structural and semantic information inherent in HTML, such as headings and table structures, is lost during this plain-text-based RAG process. To alleviate this problem, we propose HtmlRAG, which uses HTML instead of plain text as the format of retrieved knowledge in RAG. We believe HTML is better than plain text in modeling knowledge in external documents, and most LLMs possess robust capacities to understand HTML. However, utilizing HTML presents new challenges. HTML contains additional content such as tags, JavaScript, and CSS specifications, which bring extra input tokens and noise to the RAG system. To address this issue, we propose HTML cleaning, compression, and pruning strategies, to shorten the HTML while minimizing the loss of information. Specifically, we design a two-step block-tree-based pruning method that prunes useless HTML blocks and keeps only the relevant part of the HTML. Experiments on six QA datasets confirm the superiority of using HTML in RAG systems.
Abstract:We propose Framer for interactive frame interpolation, which targets producing smoothly transitioning frames between two images as per user creativity. Concretely, besides taking the start and end frames as inputs, our approach supports customizing the transition process by tailoring the trajectory of some selected keypoints. Such a design enjoys two clear benefits. First, incorporating human interaction mitigates the issue arising from numerous possibilities of transforming one image to another, and in turn enables finer control of local motions. Second, as the most basic form of interaction, keypoints help establish the correspondence across frames, enhancing the model to handle challenging cases (e.g., objects on the start and end frames are of different shapes and styles). It is noteworthy that our system also offers an "autopilot" mode, where we introduce a module to estimate the keypoints and refine the trajectory automatically, to simplify the usage in practice. Extensive experimental results demonstrate the appealing performance of Framer on various applications, such as image morphing, time-lapse video generation, cartoon interpolation, etc. The code, the model, and the interface will be released to facilitate further research.
Abstract:Full-duplex spoken dialogue systems significantly advance over traditional turn-based dialogue systems, as they allow simultaneous bidirectional communication, closely mirroring human-human interactions. However, achieving low latency and natural interactions in full-duplex dialogue systems remains a significant challenge, especially considering human conversation dynamics such as interruptions, backchannels, and overlapping speech. In this paper, we introduce a novel End-to-End GPT-based model OmniFlatten for full-duplex conversation, capable of effectively modeling the complex behaviors inherent to natural conversations with low latency. To achieve full-duplex communication capabilities, we propose a multi-stage post-training scheme that progressively adapts a text-based large language model (LLM) backbone into a speech-text dialogue LLM, capable of generating text and speech in real time, without modifying the architecture of the backbone LLM. The training process comprises three stages: modality alignment, half-duplex dialogue learning, and full-duplex dialogue learning. Throughout all training stages, we standardize the data using a flattening operation, which allows us to unify the training methods and the model architecture across different modalities and tasks. Our approach offers a straightforward modeling technique and a promising research direction for developing efficient and natural end-to-end full-duplex spoken dialogue systems. Audio samples of dialogues generated by OmniFlatten can be found at this web site (https://omniflatten.github.io/).
Abstract:In this article, we propose new network architectures that integrate multi-functional reconfigurable intelligent surfaces (MF-RISs) into 6G networks to enhance both communication and sensing capabilities. Firstly, we elaborate how to leverage MF-RISs for improving communication performance in different communication modes including unicast, mulitcast, and broadcast and for different multi-access schemes. Next, we emphasize synergistic benefits of integrating MF-RISs with wireless sensing, enabling more accurate and efficient target detection in 6G networks. Furthermore, we present two schemes that utilize MF-RISs to enhance the performance of integrated sensing and communication (ISAC). We also study multi-objective optimization to achieve the optimal trade-off between communication and sensing performance. Finally, we present numerical results to show the performance improvements offered by MF-RISs compared to conventional RISs in ISAC. We also outline key research directions for MF-RIS under the ambition of 6G.
Abstract:Sound Event Detection (SED) detects regions of sound events, while Speaker Diarization (SD) segments speech conversations attributed to individual speakers. In SED, all speaker segments are classified as a single speech event, while in SD, non-speech sounds are treated merely as background noise. Thus, both tasks provide only partial analysis in complex audio scenarios involving both speech conversation and non-speech sounds. In this paper, we introduce a novel task called Unified Audio Event Detection (UAED) for comprehensive audio analysis. UAED explores the synergy between SED and SD tasks, simultaneously detecting non-speech sound events and fine-grained speech events based on speaker identities. To tackle this task, we propose a Transformer-based UAED (T-UAED) framework and construct the UAED Data derived from the Librispeech dataset and DESED soundbank. Experiments demonstrate that the proposed framework effectively exploits task interactions and substantially outperforms the baseline that simply combines the outputs of SED and SD models. T-UAED also shows its versatility by performing comparably to specialized models for individual SED and SD tasks on DESED and CALLHOME datasets.
Abstract:Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.
Abstract:Automatic Speech Recognition (ASR) transcripts exhibit recognition errors and various spoken language phenomena such as disfluencies, ungrammatical sentences, and incomplete sentences, hence suffering from poor readability. To improve readability, we propose a Contextualized Spoken-to-Written conversion (CoS2W) task to address ASR and grammar errors and also transfer the informal text into the formal style with content preserved, utilizing contexts and auxiliary information. This task naturally matches the in-context learning capabilities of Large Language Models (LLMs). To facilitate comprehensive comparisons of various LLMs, we construct a document-level Spoken-to-Written conversion of ASR Transcripts Benchmark (SWAB) dataset. Using SWAB, we study the impact of different granularity levels on the CoS2W performance, and propose methods to exploit contexts and auxiliary information to enhance the outputs. Experimental results reveal that LLMs have the potential to excel in the CoS2W task, particularly in grammaticality and formality, our methods achieve effective understanding of contexts and auxiliary information by LLMs. We further investigate the effectiveness of using LLMs as evaluators and find that LLM evaluators show strong correlations with human evaluations on rankings of faithfulness and formality, which validates the reliability of LLM evaluators for the CoS2W task.
Abstract:The video topic segmentation (VTS) task segments videos into intelligible, non-overlapping topics, facilitating efficient comprehension of video content and quick access to specific content. VTS is also critical to various downstream video understanding tasks. Traditional VTS methods using shallow features or unsupervised approaches struggle to accurately discern the nuances of topical transitions. Recently, supervised approaches have achieved superior performance on video action or scene segmentation over unsupervised approaches. In this work, we improve supervised VTS by thoroughly exploring multimodal fusion and multimodal coherence modeling. Specifically, (1) we enhance multimodal fusion by exploring different architectures using cross-attention and mixture of experts. (2) To generally strengthen multimodality alignment and fusion, we pre-train and fine-tune the model with multimodal contrastive learning. (3) We propose a new pre-training task tailored for the VTS task, and a novel fine-tuning task for enhancing multimodal coherence modeling for VTS. We evaluate the proposed approaches on educational videos, in the form of lectures, due to the vital role of topic segmentation of educational videos in boosting learning experiences. Additionally, we introduce a large-scale Chinese lecture video dataset to augment the existing English corpus, promoting further research in VTS. Experiments on both English and Chinese lecture datasets demonstrate that our model achieves superior VTS performance compared to competitive unsupervised and supervised baselines.