Abstract:The widespread use of e-bikes has facilitated short-distance travel yet led to confusion and safety problems in road traffic. This study focuses on the dual characteristics of e-bikes in traffic conflicts: they resemble pedestrians when interacting with motor vehicles and behave like motor vehicles when in conflict with pedestrians, which raises the right of way concerns when potential conflicts are at stake. Using the Quantal Response Equilibrium model, this research analyzes the behavioral choice differences of three groups of road users (vehicle-pedestrian, vehicle-e-bike, e-bike-pedestrian) at right-turn-on-red crossroads in right-turning lines and straight-going lines conflict scenarios. The results show that the behavior of e-bikes is more similar to that of motor vehicles than pedestrians overall, and their interactions with either pedestrians or motor vehicles do not establish a reasonable order, increasing the likelihood of confusion and conflict. In contrast, a mutual understanding has developed between motor vehicles and pedestrians, where motor vehicles tend to yield, and pedestrians tend to cross. By clarifying the game theoretical model and introducing the rationality parameter, this study precisely locates the role of e-bikes among road users, which provides a reliable theoretical basis for optimizing traffic regulations.
Abstract:Text-to-Speech (TTS) systems face ongoing challenges in processing complex linguistic features, handling polyphonic expressions, and producing natural-sounding multilingual speech - capabilities that are crucial for future AI applications. In this paper, we present Fish-Speech, a novel framework that implements a serial fast-slow Dual Autoregressive (Dual-AR) architecture to enhance the stability of Grouped Finite Scalar Vector Quantization (GFSQ) in sequence generation tasks. This architecture improves codebook processing efficiency while maintaining high-fidelity outputs, making it particularly effective for AI interactions and voice cloning. Fish-Speech leverages Large Language Models (LLMs) for linguistic feature extraction, eliminating the need for traditional grapheme-to-phoneme (G2P) conversion and thereby streamlining the synthesis pipeline and enhancing multilingual support. Additionally, we developed FF-GAN through GFSQ to achieve superior compression ratios and near 100\% codebook utilization. Our approach addresses key limitations of current TTS systems while providing a foundation for more sophisticated, context-aware speech synthesis. Experimental results show that Fish-Speech significantly outperforms baseline models in handling complex linguistic scenarios and voice cloning tasks, demonstrating its potential to advance TTS technology in AI applications. The implementation is open source at \href{https://github.com/fishaudio/fish-speech}{https://github.com/fishaudio/fish-speech}.
Abstract:Current methods of building LLMs with voice interaction capabilities rely heavily on explicit text autoregressive generation before or during speech response generation to maintain content quality, which unfortunately brings computational overhead and increases latency in multi-turn interactions. To address this, we introduce IntrinsicVoic,e an LLM designed with intrinsic real-time voice interaction capabilities. IntrinsicVoice aims to facilitate the transfer of textual capabilities of pre-trained LLMs to the speech modality by mitigating the modality gap between text and speech. Our novelty architecture, GroupFormer, can reduce speech sequences to lengths comparable to text sequences while generating high-quality audio, significantly reducing the length difference between speech and text, speeding up inference, and alleviating long-text modeling issues. Additionally, we construct a multi-turn speech-to-speech dialogue dataset named \method-500k which includes nearly 500k turns of speech-to-speech dialogues, and a cross-modality training strategy to enhance the semantic alignment between speech and text. Experimental results demonstrate that IntrinsicVoice can generate high-quality speech response with latency lower than 100ms in multi-turn dialogue scenarios. Demos are available at https://instrinsicvoice.github.io/.
Abstract:Time series forecasting is prevalent in extensive real-world applications, such as financial analysis and energy planning. Previous studies primarily focus on time series modality, endeavoring to capture the intricate variations and dependencies inherent in time series. Beyond numerical time series data, we notice that metadata (e.g.~dataset and variate descriptions) also carries valuable information essential for forecasting, which can be used to identify the application scenario and provide more interpretable knowledge than digit sequences. Inspired by this observation, we propose a Metadata-informed Time Series Transformer (MetaTST), which incorporates multiple levels of context-specific metadata into Transformer forecasting models to enable informative time series forecasting. To tackle the unstructured nature of metadata, MetaTST formalizes them into natural languages by pre-designed templates and leverages large language models (LLMs) to encode these texts into metadata tokens as a supplement to classic series tokens, resulting in an informative embedding. Further, a Transformer encoder is employed to communicate series and metadata tokens, which can extend series representations by metadata information for more accurate forecasting. This design also allows the model to adaptively learn context-specific patterns across various scenarios, which is particularly effective in handling large-scale, diverse-scenario forecasting tasks. Experimentally, MetaTST achieves state-of-the-art compared to advanced time series models and LLM-based methods on widely acknowledged short- and long-term forecasting benchmarks, covering both single-dataset individual and multi-dataset joint training settings.
Abstract:We introduce Seed-Music, a suite of music generation systems capable of producing high-quality music with fine-grained style control. Our unified framework leverages both auto-regressive language modeling and diffusion approaches to support two key music creation workflows: \textit{controlled music generation} and \textit{post-production editing}. For controlled music generation, our system enables vocal music generation with performance controls from multi-modal inputs, including style descriptions, audio references, musical scores, and voice prompts. For post-production editing, it offers interactive tools for editing lyrics and vocal melodies directly in the generated audio. We encourage readers to listen to demo audio examples at https://team.doubao.com/seed-music .
Abstract:Speech self-supervised pre-training can effectively improve the performance of downstream tasks. However, previous self-supervised learning (SSL) methods for speech, such as HuBERT and BEST-RQ, focus on utilizing non-causal encoders with bidirectional context, and lack sufficient support for downstream streaming models. To address this issue, we introduce the next token prediction based speech pre-training method with random-projection quantizer (NEST-RQ). NEST-RQ employs causal encoders with only left context and uses next token prediction (NTP) as the training task. On the large-scale dataset, compared to BEST-RQ, the proposed NEST-RQ achieves comparable performance on non-streaming automatic speech recognition (ASR) and better performance on streaming ASR. We also conduct analytical experiments in terms of the future context size of streaming ASR, the codebook quality of SSL and the model size of the encoder. In summary, the paper demonstrates the feasibility of the NTP in speech SSL and provides empirical evidence and insights for speech SSL research.
Abstract:Recent advancements in large-scale video-language models have shown significant potential for real-time planning and detailed interactions. However, their high computational demands and the scarcity of annotated datasets limit their practicality for academic researchers. In this work, we introduce VideoLLaMB, a novel framework that utilizes temporal memory tokens within bridge layers to allow for the encoding of entire video sequences alongside historical visual data, effectively preserving semantic continuity and enhancing model performance across various tasks. This approach includes recurrent memory tokens and a SceneTilling algorithm, which segments videos into independent semantic units to preserve semantic integrity. Empirically, VideoLLaMB significantly outstrips existing video-language models, demonstrating a 5.5 points improvement over its competitors across three VideoQA benchmarks, and 2.06 points on egocentric planning. Comprehensive results on the MVBench show that VideoLLaMB-7B achieves markedly better results than previous 7B models of same LLM. Remarkably, it maintains robust performance as PLLaVA even as video length increases up to 8 times. Besides, the frame retrieval results on our specialized Needle in a Video Haystack (NIAVH) benchmark, further validate VideoLLaMB's prowess in accurately identifying specific frames within lengthy videos. Our SceneTilling algorithm also enables the generation of streaming video captions directly, without necessitating additional training. In terms of efficiency, VideoLLaMB, trained on 16 frames, supports up to 320 frames on a single Nvidia A100 GPU with linear GPU memory scaling, ensuring both high performance and cost-effectiveness, thereby setting a new foundation for long-form video-language models in both academic and practical applications.
Abstract:Hallucination is a common issue in Multimodal Large Language Models (MLLMs), yet the underlying principles remain poorly understood. In this paper, we investigate which components of MLLMs contribute to object hallucinations. To analyze image representations while completely avoiding the influence of all other factors other than the image representation itself, we propose a parametric-free representation alignment metric (Pfram) that can measure the similarities between any two representation systems without requiring additional training parameters. Notably, Pfram can also assess the alignment of a neural representation system with the human representation system, represented by ground-truth annotations of images. By evaluating the alignment with object annotations, we demonstrate that this metric shows strong and consistent correlations with object hallucination across a wide range of state-of-the-art MLLMs, spanning various model architectures and sizes. Furthermore, using this metric, we explore other key issues related to image representations in MLLMs, such as the role of different modules, the impact of textual instructions, and potential improvements including the use of alternative visual encoders. Our code is available at: https://github.com/yellow-binary-tree/Pfram.
Abstract:Dialogue serves as the most natural manner of human-computer interaction (HCI). Recent advancements in speech language models (SLM) have significantly enhanced speech-based conversational AI. However, these models are limited to turn-based conversation, lacking the ability to interact with humans in real-time spoken scenarios, for example, being interrupted when the generated content is not satisfactory. To address these limitations, we explore full duplex modeling (FDM) in interactive speech language models (iSLM), focusing on enhancing real-time interaction and, more explicitly, exploring the quintessential ability of interruption. We introduce a novel model design, namely listening-while-speaking language model (LSLM), an end-to-end system equipped with both listening and speaking channels. Our LSLM employs a token-based decoder-only TTS for speech generation and a streaming self-supervised learning (SSL) encoder for real-time audio input. LSLM fuses both channels for autoregressive generation and detects turn-taking in real time. Three fusion strategies -- early fusion, middle fusion, and late fusion -- are explored, with middle fusion achieving an optimal balance between speech generation and real-time interaction. Two experimental settings, command-based FDM and voice-based FDM, demonstrate LSLM's robustness to noise and sensitivity to diverse instructions. Our results highlight LSLM's capability to achieve duplex communication with minimal impact on existing systems. This study aims to advance the development of interactive speech dialogue systems, enhancing their applicability in real-world contexts.
Abstract:Compositional visual reasoning methods, which translate a complex query into a structured composition of feasible visual tasks, have exhibited a strong potential in complicated multi-modal tasks. Empowered by recent advances in large language models (LLMs), this multi-modal challenge has been brought to a new stage by treating LLMs as few-shot/zero-shot planners, i.e., vision-language (VL) programming. Such methods, despite their numerous merits, suffer from challenges due to LLM planning mistakes or inaccuracy of visual execution modules, lagging behind the non-compositional models. In this work, we devise a "plug-and-play" method, ExoViP, to correct errors in both the planning and execution stages through introspective verification. We employ verification modules as "exoskeletons" to enhance current VL programming schemes. Specifically, our proposed verification module utilizes a mixture of three sub-verifiers to validate predictions after each reasoning step, subsequently calibrating the visual module predictions and refining the reasoning trace planned by LLMs. Experimental results on two representative VL programming methods showcase consistent improvements on five compositional reasoning tasks on standard benchmarks. In light of this, we believe that ExoViP can foster better performance and generalization on open-domain multi-modal challenges.