Abstract:Accurate and interpretable detection of AI-generated images is essential for mitigating risks associated with AI misuse. However, the substantial domain gap among generative models makes it challenging to develop a generalizable forgery detection model. Moreover, since every pixel in an AI-generated image is synthesized, traditional saliency-based forgery explanation methods are not well suited for this task. To address these challenges, we propose modeling AI-generated image detection and explanation as a Forgery Detection and Reasoning task (FDR-Task), leveraging vision-language models (VLMs) to provide accurate detection through structured and reliable reasoning over forgery attributes. To facilitate this task, we introduce the Multi-Modal Forgery Reasoning dataset (MMFR-Dataset), a large-scale dataset containing 100K images across 10 generative models, with 10 types of forgery reasoning annotations, enabling comprehensive evaluation of FDR-Task. Additionally, we propose FakeReasoning, a forgery detection and reasoning framework with two key components. First, Forgery-Aligned Contrastive Learning enhances VLMs' understanding of forgery-related semantics through both cross-modal and intra-modal contrastive learning between images and forgery attribute reasoning. Second, a Classification Probability Mapper bridges the optimization gap between forgery detection and language modeling by mapping the output logits of VLMs to calibrated binary classification probabilities. Experiments across multiple generative models demonstrate that FakeReasoning not only achieves robust generalization but also outperforms state-of-the-art methods on both detection and reasoning tasks.
Abstract:Lightweight image super-resolution (SR) aims to reconstruct high-resolution images from low-resolution images with limited computational costs. We find existing frequency-based SR methods cannot balance the reconstruction of overall structures and high-frequency parts. Meanwhile, these methods are inefficient for handling frequency features and unsuitable for lightweight SR. In this paper, we show introducing both wavelet and Fourier information allows our model to consider both high-frequency features and overall SR structure reconstruction while reducing costs. Specifically, we propose a dual-domain modulation network that utilize wavelet-domain modulation self-Transformer (WMT) plus Fourier supervision to modulate frequency features in addition to spatial domain modulation. Compared to existing frequency-based SR modules, our WMT is more suitable for frequency learning in lightweight SR. Experimental results show that our method achieves a comparable PSNR of SRFormer and MambaIR while with less than 50% and 60% of their FLOPs and achieving inference speeds 15.4x and 5.4x faster, respectively, demonstrating the effectiveness of our method on SR quality and lightweight. Codes will be released upon acceptance.
Abstract:Image super-resolution (SR) aims to recover low-resolution images to high-resolution images, where improving SR efficiency is a high-profile challenge. However, commonly used units in SR, like convolutions and window-based Transformers, have limited receptive fields, making it challenging to apply them to improve SR under extremely limited computational cost. To address this issue, inspired by modeling convolution theorem through token mix, we propose a Fourier token-based plugin called FourierSR to improve SR uniformly, which avoids the instability or inefficiency of existing token mix technologies when applied as plug-ins. Furthermore, compared to convolutions and windows-based Transformers, our FourierSR only utilizes Fourier transform and multiplication operations, greatly reducing complexity while having global receptive fields. Experimental results show that our FourierSR as a plug-and-play unit brings an average PSNR gain of 0.34dB for existing efficient SR methods on Manga109 test set at the scale of x4, while the average increase in the number of Params and FLOPs is only 0.6% and 1.5% of original sizes. We will release our codes upon acceptance.
Abstract:The Segment Anything Model (SAM) has demonstrated strong and versatile segmentation capabilities, along with intuitive prompt-based interactions. However, customizing SAM for medical image segmentation requires massive amounts of pixel-level annotations and precise point- or box-based prompt designs. To address these challenges, we introduce PGP-SAM, a novel prototype-based few-shot tuning approach that uses limited samples to replace tedious manual prompts. Our key idea is to leverage inter- and intra-class prototypes to capture class-specific knowledge and relationships. We propose two main components: (1) a plug-and-play contextual modulation module that integrates multi-scale information, and (2) a class-guided cross-attention mechanism that fuses prototypes and features for automatic prompt generation. Experiments on a public multi-organ dataset and a private ventricle dataset demonstrate that PGP-SAM achieves superior mean Dice scores compared with existing prompt-free SAM variants, while using only 10\% of the 2D slices.
Abstract:The Controllable Image Captioning Agent (CapAgent) is an innovative system designed to bridge the gap between user simplicity and professional-level outputs in image captioning tasks. CapAgent automatically transforms user-provided simple instructions into detailed, professional instructions, enabling precise and context-aware caption generation. By leveraging multimodal large language models (MLLMs) and external tools such as object detection tool and search engines, the system ensures that captions adhere to specified guidelines, including sentiment, keywords, focus, and formatting. CapAgent transparently controls each step of the captioning process, and showcases its reasoning and tool usage at every step, fostering user trust and engagement. The project code is available at https://github.com/xin-ran-w/CapAgent.
Abstract:Object description plays an important role for visually impaired individuals to understand and compare the differences between objects. Recent multimodal large language models (MLLMs) exhibit powerful perceptual abilities and demonstrate impressive potential for generating object-centric captions. However, the descriptions generated by such models may still usually contain a lot of content that is not relevant to the user intent. Under special scenarios, users may only need the details of certain dimensions of an object. In this paper, we propose a training-free captioning refinement pipeline, \textbf{Dimension Tailor}, designed to enhance user-specified details in object descriptions. This pipeline includes three steps: dimension extracting, erasing, and supplementing, which decompose the description into pre-defined dimensions and correspond to user intent. Therefore, it can not only improve the quality of object details but also offer flexibility in including or excluding specific dimensions based on user preferences. We conducted extensive experiments to demonstrate the effectiveness of Dimension Tailor on controllable object descriptions. Notably, the proposed pipeline can consistently improve the performance of the recent MLLMs. The code is currently accessible at the following anonymous link: \url{https://github.com/xin-ran-w/ControllableObjectDescription}.
Abstract:Automatic polyp segmentation is helpful to assist clinical diagnosis and treatment. In daily clinical practice, clinicians exhibit robustness in identifying polyps with both location and size variations. It is uncertain if deep segmentation models can achieve comparable robustness in automated colonoscopic analysis. To benchmark the model robustness, we focus on evaluating the robustness of segmentation models on the polyps with various attributes (e.g. location and size) and healthy samples. Based on the Latent Diffusion Model, we perform attribute editing on real polyps and build a new dataset named Polyp-E. Our synthetic dataset boasts exceptional realism, to the extent that clinical experts find it challenging to discern them from real data. We evaluate several existing polyp segmentation models on the proposed benchmark. The results reveal most of the models are highly sensitive to attribute variations. As a novel data augmentation technique, the proposed editing pipeline can improve both in-distribution and out-of-distribution generalization ability. The code and datasets will be released.
Abstract:Rectified Flow Transformers (RFTs) offer superior training and inference efficiency, making them likely the most viable direction for scaling up diffusion models. However, progress in generation resolution has been relatively slow due to data quality and training costs. Tuning-free resolution extrapolation presents an alternative, but current methods often reduce generative stability, limiting practical application. In this paper, we review existing resolution extrapolation methods and introduce the I-Max framework to maximize the resolution potential of Text-to-Image RFTs. I-Max features: (i) a novel Projected Flow strategy for stable extrapolation and (ii) an advanced inference toolkit for generalizing model knowledge to higher resolutions. Experiments with Lumina-Next-2K and Flux.1-dev demonstrate I-Max's ability to enhance stability in resolution extrapolation and show that it can bring image detail emergence and artifact correction, confirming the practical value of tuning-free resolution extrapolation.
Abstract:Currently, large vision-language models have gained promising progress on many downstream tasks. However, they still suffer many challenges in fine-grained visual understanding tasks, such as object attribute comprehension. Besides, there have been growing efforts on the evaluations of large vision-language models, but lack of in-depth study of attribute comprehension and the visual language fine-tuning process. In this paper, we propose to evaluate the attribute comprehension ability of large vision-language models from two perspectives: attribute recognition and attribute hierarchy understanding. We evaluate three vision-language interactions, including visual question answering, image-text matching, and image-text cosine similarity. Furthermore, we explore the factors affecting attribute comprehension during fine-tuning. Through a series of quantitative and qualitative experiments, we introduce three main findings: (1) Large vision-language models possess good attribute recognition ability, but their hierarchical understanding ability is relatively limited. (2) Compared to ITC, ITM exhibits superior capability in capturing finer details, making it more suitable for attribute understanding tasks. (3) The attribute information in the captions used for fine-tuning plays a crucial role in attribute understanding. We hope this work can help guide future progress in fine-grained visual understanding of large vision-language models.
Abstract:Face super-resolution aims to reconstruct a high-resolution face image from a low-resolution face image. Previous methods typically employ an encoder-decoder structure to extract facial structural features, where the direct downsampling inevitably introduces distortions, especially to high-frequency features such as edges. To address this issue, we propose a wavelet-based feature enhancement network, which mitigates feature distortion by losslessly decomposing the input feature into high and low-frequency components using the wavelet transform and processing them separately. To improve the efficiency of facial feature extraction, a full domain Transformer is further proposed to enhance local, regional, and global facial features. Such designs allow our method to perform better without stacking many modules as previous methods did. Experiments show that our method effectively balances performance, model size, and speed. Code link: https://github.com/PRIS-CV/WFEN.