Abstract:Infants develop complex visual understanding rapidly, even preceding of the acquisition of linguistic inputs. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al.,which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We introduce a training-free framework that can discover visual concept neurons hidden in the model's internal representations. Our findings show that these neurons can classify objects outside its original vocabulary. Furthermore, we compare the visual representations in infant-like models with those in moder computer vision models, such as CLIP or ImageNet pre-trained model, highlighting key similarities and differences. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant's visual and linguistic inputs.
Abstract:Instance segmentation algorithms in remote sensing are typically based on conventional methods, limiting their application to seen scenarios and closed-set predictions. In this work, we propose a novel task called zero-shot remote sensing instance segmentation, aimed at identifying aerial objects that are absent from training data. Challenges arise when classifying aerial categories with high inter-class similarity and intra-class variance. Besides, the domain gap between vision-language models' pretraining datasets and remote sensing datasets hinders the zero-shot capabilities of the pretrained model when it is directly applied to remote sensing images. To address these challenges, we propose a $\textbf{Z}$ero-Sh$\textbf{o}$t $\textbf{R}$emote Sensing $\textbf{I}$nstance Segmentation framework, dubbed $\textbf{ZoRI}$. Our approach features a discrimination-enhanced classifier that uses refined textual embeddings to increase the awareness of class disparities. Instead of direct fine-tuning, we propose a knowledge-maintained adaptation strategy that decouples semantic-related information to preserve the pretrained vision-language alignment while adjusting features to capture remote sensing domain-specific visual cues. Additionally, we introduce a prior-injected prediction with cache bank of aerial visual prototypes to supplement the semantic richness of text embeddings and seamlessly integrate aerial representations, adapting to the remote sensing domain. We establish new experimental protocols and benchmarks, and extensive experiments convincingly demonstrate that ZoRI achieves the state-of-art performance on the zero-shot remote sensing instance segmentation task. Our code is available at https://github.com/HuangShiqi128/ZoRI.
Abstract:The rapid development of AI models has led to a growing emphasis on enhancing their capabilities for complex input data such as videos. While large-scale video datasets have been introduced to support this growth, the unique challenges of reducing redundancies in video \textbf{sets} have not been explored. Compared to image datasets or individual videos, video \textbf{sets} have a two-layer nested structure, where the outer layer is the collection of individual videos, and the inner layer contains the correlations among frame-level data points to provide temporal information. Video \textbf{sets} have two dimensions of redundancies: within-sample and inter-sample redundancies. Existing methods like key frame selection, dataset pruning or dataset distillation are not addressing the unique challenge of video sets since they aimed at reducing redundancies in only one of the dimensions. In this work, we are the first to study Video Set Distillation, which synthesizes optimized video data by jointly addressing within-sample and inter-sample redundancies. Our Information Diversification and Temporal Densification (IDTD) method jointly reduces redundancies across both dimensions. This is achieved through a Feature Pool and Feature Selectors mechanism to preserve inter-sample diversity, alongside a Temporal Fusor that maintains temporal information density within synthesized videos. Our method achieves state-of-the-art results in Video Dataset Distillation, paving the way for more effective redundancy reduction and efficient AI model training on video datasets.
Abstract:Recent advancements in deep learning have shown impressive results in image and video denoising, leveraging extensive pairs of noisy and noise-free data for supervision. However, the challenge of acquiring paired videos for dynamic scenes hampers the practical deployment of deep video denoising techniques. In contrast, this obstacle is less pronounced in image denoising, where paired data is more readily available. Thus, a well-trained image denoiser could serve as a reliable spatial prior for video denoising. In this paper, we propose a novel unsupervised video denoising framework, named ``Temporal As a Plugin'' (TAP), which integrates tunable temporal modules into a pre-trained image denoiser. By incorporating temporal modules, our method can harness temporal information across noisy frames, complementing its power of spatial denoising. Furthermore, we introduce a progressive fine-tuning strategy that refines each temporal module using the generated pseudo clean video frames, progressively enhancing the network's denoising performance. Compared to other unsupervised video denoising methods, our framework demonstrates superior performance on both sRGB and raw video denoising datasets.
Abstract:Recent advancements in deep learning have yielded promising results for the image shadow removal task. However, most existing methods rely on binary pre-generated shadow masks. The binary nature of such masks could potentially lead to artifacts near the boundary between shadow and non-shadow areas. In view of this, inspired by the physical model of shadow formation, we introduce novel soft shadow masks specifically designed for shadow removal. To achieve such soft masks, we propose a \textit{SoftShadow} framework by leveraging the prior knowledge of pretrained SAM and integrating physical constraints. Specifically, we jointly tune the SAM and the subsequent shadow removal network using penumbra formation constraint loss and shadow removal loss. This framework enables accurate predictions of penumbra (partially shaded regions) and umbra (fully shaded regions) areas while simultaneously facilitating end-to-end shadow removal. Through extensive experiments on popular datasets, we found that our SoftShadow framework, which generates soft masks, can better restore boundary artifacts, achieve state-of-the-art performance, and demonstrate superior generalizability.
Abstract:The integration of miniaturized spectrometers into mobile devices offers new avenues for image quality enhancement and facilitates novel downstream tasks. However, the broader application of spectral sensors in mobile photography is hindered by the inherent complexity of spectral images and the constraints of spectral imaging capabilities. To overcome these challenges, we propose a joint RGB-Spectral decomposition model guided enhancement framework, which consists of two steps: joint decomposition and prior-guided enhancement. Firstly, we leverage the complementarity between RGB and Low-resolution Multi-Spectral Images (Lr-MSI) to predict shading, reflectance, and material semantic priors. Subsequently, these priors are seamlessly integrated into the established HDRNet to promote dynamic range enhancement, color mapping, and grid expert learning, respectively. Additionally, we construct a high-quality Mobile-Spec dataset to support our research, and our experiments validate the effectiveness of Lr-MSI in the tone enhancement task. This work aims to establish a solid foundation for advancing spectral vision in mobile photography. The code is available at \url{https://github.com/CalayZhou/JDM-HDRNet}.
Abstract:Despite significant progress in 3D point cloud segmentation, existing methods primarily address specific tasks and depend on explicit instructions to identify targets, lacking the capability to infer and understand implicit user intentions in a unified framework. In this work, we propose a model, called SegPoint, that leverages the reasoning capabilities of a multi-modal Large Language Model (LLM) to produce point-wise segmentation masks across a diverse range of tasks: 1) 3D instruction segmentation, 2) 3D referring segmentation, 3) 3D semantic segmentation, and 4) 3D open-vocabulary semantic segmentation. To advance 3D instruction research, we introduce a new benchmark, Instruct3D, designed to evaluate segmentation performance from complex and implicit instructional texts, featuring 2,565 point cloud-instruction pairs. Our experimental results demonstrate that SegPoint achieves competitive performance on established benchmarks such as ScanRefer for referring segmentation and ScanNet for semantic segmentation, while delivering outstanding outcomes on the Instruct3D dataset. To our knowledge, SegPoint is the first model to address these varied segmentation tasks within a single framework, achieving satisfactory performance.
Abstract:Shadow removal aims at restoring the image content within shadow regions, pursuing a uniform distribution of illumination that is consistent between shadow and non-shadow regions. {Comparing to other image restoration tasks, there are two unique challenges in shadow removal:} 1) The patterns of shadows are arbitrary, varied, and often have highly complex trace structures, making ``trace-less'' image recovery difficult. 2) The degradation caused by shadows is spatially non-uniform, resulting in inconsistencies in illumination and color between shadow and non-shadow areas. Recent developments in this field are primarily driven by deep learning-based solutions, employing a variety of learning strategies, network architectures, loss functions, and training data. Nevertheless, a thorough and insightful review of deep learning-based shadow removal techniques is still lacking. In this paper, we are the first to provide a comprehensive survey to cover various aspects ranging from technical details to applications. We highlight the major advancements in deep learning-based single-image shadow removal methods, thoroughly review previous research across various categories, and provide insights into the historical progression of these developments. Additionally, we summarize performance comparisons both quantitatively and qualitatively. Beyond the technical aspects of shadow removal methods, we also explore potential future directions for this field.
Abstract:Concept bottleneck models (CBMs), which predict human-interpretable concepts (e.g., nucleus shapes in cell images) before predicting the final output (e.g., cell type), provide insights into the decision-making processes of the model. However, training CBMs solely in a data-driven manner can introduce undesirable biases, which may compromise prediction performance, especially when the trained models are evaluated on out-of-domain images (e.g., those acquired using different devices). To mitigate this challenge, we propose integrating clinical knowledge to refine CBMs, better aligning them with clinicians' decision-making processes. Specifically, we guide the model to prioritize the concepts that clinicians also prioritize. We validate our approach on two datasets of medical images: white blood cell and skin images. Empirical validation demonstrates that incorporating medical guidance enhances the model's classification performance on unseen datasets with varying preparation methods, thereby increasing its real-world applicability.
Abstract:Novel view synthesis from raw images provides superior high dynamic range (HDR) information compared to reconstructions from low dynamic range RGB images. However, the inherent noise in unprocessed raw images compromises the accuracy of 3D scene representation. Our study reveals that 3D Gaussian Splatting (3DGS) is particularly susceptible to this noise, leading to numerous elongated Gaussian shapes that overfit the noise, thereby significantly degrading reconstruction quality and reducing inference speed, especially in scenarios with limited views. To address these issues, we introduce a novel self-supervised learning framework designed to reconstruct HDR 3DGS from a limited number of noisy raw images. This framework enhances 3DGS by integrating a noise extractor and employing a noise-robust reconstruction loss that leverages a noise distribution prior. Experimental results show that our method outperforms LDR/HDR 3DGS and previous state-of-the-art (SOTA) self-supervised and supervised pre-trained models in both reconstruction quality and inference speed on the RawNeRF dataset across a broad range of training views. Code can be found in \url{https://lizhihao6.github.io/Raw3DGS}.