Abstract:Complex visual reasoning and question answering (VQA) is a challenging task that requires compositional multi-step processing and higher-level reasoning capabilities beyond the immediate recognition and localization of objects and events. Here, we introduce a fully neural Iterative and Parallel Reasoning Mechanism (IPRM) that combines two distinct forms of computation -- iterative and parallel -- to better address complex VQA scenarios. Specifically, IPRM's "iterative" computation facilitates compositional step-by-step reasoning for scenarios wherein individual operations need to be computed, stored, and recalled dynamically (e.g. when computing the query "determine the color of pen to the left of the child in red t-shirt sitting at the white table"). Meanwhile, its "parallel" computation allows for the simultaneous exploration of different reasoning paths and benefits more robust and efficient execution of operations that are mutually independent (e.g. when counting individual colors for the query: "determine the maximum occurring color amongst all t-shirts"). We design IPRM as a lightweight and fully-differentiable neural module that can be conveniently applied to both transformer and non-transformer vision-language backbones. It notably outperforms prior task-specific methods and transformer-based attention modules across various image and video VQA benchmarks testing distinct complex reasoning capabilities such as compositional spatiotemporal reasoning (AGQA), situational reasoning (STAR), multi-hop reasoning generalization (CLEVR-Humans) and causal event linking (CLEVRER-Humans). Further, IPRM's internal computations can be visualized across reasoning steps, aiding interpretability and diagnosis of its errors.
Abstract:Understanding spatial relations is a crucial cognitive ability for both humans and AI. While current research has predominantly focused on the benchmarking of text-to-image (T2I) models, we propose a more comprehensive evaluation that includes \textit{both} T2I and Large Language Models (LLMs). As spatial relations are naturally understood in a visuo-spatial manner, we develop an approach to convert LLM outputs into an image, thereby allowing us to evaluate both T2I models and LLMs \textit{visually}. We examined the spatial relation understanding of 8 prominent generative models (3 T2I models and 5 LLMs) on a set of 10 common prepositions, as well as assess the feasibility of automatic evaluation methods. Surprisingly, we found that T2I models only achieve subpar performance despite their impressive general image-generation abilities. Even more surprisingly, our results show that LLMs are significantly more accurate than T2I models in generating spatial relations, despite being primarily trained on textual data. We examined reasons for model failures and highlight gaps that can be filled to enable more spatially faithful generations.
Abstract:In this work we explore the relevance of dropout for modern language models, particularly in the context of models on the scale of <100M parameters. We explore it's relevance firstly in the regime of improving the sample efficiency of models given small, high quality datasets, and secondly in the regime of improving the quality of its fit on larger datasets where models may underfit. We find that concordant with conventional wisdom, dropout remains effective in the overfitting scenario, and that furthermore it may have some relevance for improving the fit of models even in the case of excess data, as suggested by previous research. In the process we find that the existing explanation for the mechanism behind this performance gain is not applicable in the case of language modelling.
Abstract:The rapid obsolescence of information in Large Language Models (LLMs) has driven the development of various techniques to incorporate new facts. However, existing methods for knowledge editing still face difficulties with multi-hop questions that require accurate fact identification and sequential logical reasoning, particularly among numerous fact updates. To tackle these challenges, this paper introduces Graph Memory-based Editing for Large Language Models (GMeLLo), a straitforward and effective method that merges the explicit knowledge representation of Knowledge Graphs (KGs) with the linguistic flexibility of LLMs. Beyond merely leveraging LLMs for question answering, GMeLLo employs these models to convert free-form language into structured queries and fact triples, facilitating seamless interaction with KGs for rapid updates and precise multi-hop reasoning. Our results show that GMeLLo significantly surpasses current state-of-the-art knowledge editing methods in the multi-hop question answering benchmark, MQuAKE, especially in scenarios with extensive knowledge edits.
Abstract:Vision-language models (VLMs) have shown impressive zero- and few-shot performance on real-world visual question answering (VQA) benchmarks, alluding to their capabilities as visual reasoning engines. However, the benchmarks being used conflate "pure" visual reasoning with world knowledge, and also have questions that involve a limited number of reasoning steps. Thus, it remains unclear whether a VLM's apparent visual reasoning performance is due to its world knowledge, or due to actual visual reasoning capabilities. To clarify this ambiguity, we systematically benchmark and dissect the zero-shot visual reasoning capabilities of VLMs through synthetic datasets that require minimal world knowledge, and allow for analysis over a broad range of reasoning steps. We focus on two novel aspects of zero-shot visual reasoning: i) evaluating the impact of conveying scene information as either visual embeddings or purely textual scene descriptions to the underlying large language model (LLM) of the VLM, and ii) comparing the effectiveness of chain-of-thought prompting to standard prompting for zero-shot visual reasoning. We find that the underlying LLMs, when provided textual scene descriptions, consistently perform better compared to being provided visual embeddings. In particular, 18% higher accuracy is achieved on the PTR dataset. We also find that CoT prompting performs marginally better than standard prompting only for the comparatively large GPT-3.5-Turbo (175B) model, and does worse for smaller-scale models. This suggests the emergence of CoT abilities for visual reasoning in LLMs at larger scales even when world knowledge is limited. Overall, we find limitations in the abilities of VLMs and LLMs for more complex visual reasoning, and highlight the important role that LLMs can play in visual reasoning.
Abstract:Social learning plays an important role in the development of human intelligence. As children, we imitate our parents' speech patterns until we are able to produce sounds; we learn from them praising us and scolding us; and as adults, we learn by working with others. In this work, we survey the degree to which this paradigm -- social learning -- has been mirrored in machine learning. In particular, since learning socially requires interacting with others, we are interested in how embodied agents can and have utilised these techniques. This is especially in light of the degree to which recent advances in natural language processing (NLP) enable us to perform new forms of social learning. We look at how behavioural cloning and next-token prediction mirror human imitation, how learning from human feedback mirrors human education, and how we can go further to enable fully communicative agents that learn from each other. We find that while individual social learning techniques have been used successfully, there has been little unifying work showing how to bring them together into socially embodied agents.
Abstract:Tactile feedback is critical for understanding the dynamics of both rigid and deformable objects in many manipulation tasks, such as non-prehensile manipulation and dense packing. We introduce an approach that combines visual and tactile sensing for robotic manipulation by learning a neural, tactile-informed dynamics model. Our proposed framework, RoboPack, employs a recurrent graph neural network to estimate object states, including particles and object-level latent physics information, from historical visuo-tactile observations and to perform future state predictions. Our tactile-informed dynamics model, learned from real-world data, can solve downstream robotics tasks with model-predictive control. We demonstrate our approach on a real robot equipped with a compliant Soft-Bubble tactile sensor on non-prehensile manipulation and dense packing tasks, where the robot must infer the physics properties of objects from direct and indirect interactions. Trained on only an average of 30 minutes of real-world interaction data per task, our model can perform online adaptation and make touch-informed predictions. Through extensive evaluations in both long-horizon dynamics prediction and real-world manipulation, our method demonstrates superior effectiveness compared to previous learning-based and physics-based simulation systems.
Abstract:The rapid advancement of large language models (LLMs) has led to significant improvements in natural language processing but also poses challenges due to their high computational and energy demands. This paper introduces a series of research efforts focused on Super Tiny Language Models (STLMs), which aim to deliver high performance with significantly reduced parameter counts. We explore innovative techniques such as byte-level tokenization with a pooling mechanism, weight tying, and efficient training strategies. These methods collectively reduce the parameter count by $90\%$ to $95\%$ compared to traditional models while maintaining competitive performance. This series of papers will explore into various subproblems, including tokenizer-free models, self-play based training, and alternative training objectives, targeting models with 10M, 50M, and 100M parameters. Our ultimate goal is to make high-performance language models more accessible and practical for a wide range of applications.
Abstract:In this study, we delve into Federated Reinforcement Learning (FedRL) in the context of value-based agents operating across diverse Markov Decision Processes (MDPs). Existing FedRL methods typically aggregate agents' learning by averaging the value functions across them to improve their performance. However, this aggregation strategy is suboptimal in heterogeneous environments where agents converge to diverse optimal value functions. To address this problem, we introduce the Convergence-AwarE SAmpling with scReening (CAESAR) aggregation scheme designed to enhance the learning of individual agents across varied MDPs. CAESAR is an aggregation strategy used by the server that combines convergence-aware sampling with a screening mechanism. By exploiting the fact that agents learning in identical MDPs are converging to the same optimal value function, CAESAR enables the selective assimilation of knowledge from more proficient counterparts, thereby significantly enhancing the overall learning efficiency. We empirically validate our hypothesis and demonstrate the effectiveness of CAESAR in enhancing the learning efficiency of agents, using both a custom-built GridWorld environment and the classical FrozenLake-v1 task, each presenting varying levels of environmental heterogeneity.
Abstract:Pretrained Large Language Models have demonstrated various types of reasoning capabilities through language-based prompts alone. However, in this paper, we test the depth of graph reasoning for 5 different LLMs (GPT-4, GPT-3.5, Claude-2, Llama-2 and Palm-2) through the problems of graph reasoning. In particular, we design 10 distinct problems of graph traversal, each representing increasing levels of complexity. Further, we analyze the performance of models across various settings such as varying sizes of graphs as well as different forms of k-shot prompting. We highlight various limitations, biases, and properties of LLMs through this benchmarking process, such as an inverse relation to the average degrees of freedom of traversal per node in graphs, the overall negative impact of k-shot prompting on graph reasoning tasks, and a positive response bias which prevents LLMs from identifying the absence of a valid solution. Finally, we propose a new prompting technique specially designed for graph traversal tasks, known as PathCompare, which shows a notable increase in the performance of LLMs in comparison to standard prompting and CoT.