Abstract:While neural vocoders have made significant progress in high-fidelity speech synthesis, their application on polyphonic music has remained underexplored. In this work, we propose DisCoder, a neural vocoder that leverages a generative adversarial encoder-decoder architecture informed by a neural audio codec to reconstruct high-fidelity 44.1 kHz audio from mel spectrograms. Our approach first transforms the mel spectrogram into a lower-dimensional representation aligned with the Descript Audio Codec (DAC) latent space before reconstructing it to an audio signal using a fine-tuned DAC decoder. DisCoder achieves state-of-the-art performance in music synthesis on several objective metrics and in a MUSHRA listening study. Our approach also shows competitive performance in speech synthesis, highlighting its potential as a universal vocoder.
Abstract:Despite incredible progress, many neural architectures fail to properly generalize beyond their training distribution. As such, learning to reason in a correct and generalizable way is one of the current fundamental challenges in machine learning. In this respect, logic puzzles provide a great testbed, as we can fully understand and control the learning environment. Thus, they allow to evaluate performance on previously unseen, larger and more difficult puzzles that follow the same underlying rules. Since traditional approaches often struggle to represent such scalable logical structures, we propose to model these puzzles using a graph-based approach. Then, we investigate the key factors enabling the proposed models to learn generalizable solutions in a reinforcement learning setting. Our study focuses on the impact of the inductive bias of the architecture, different reward systems and the role of recurrent modeling in enabling sequential reasoning. Through extensive experiments, we demonstrate how these elements contribute to successful extrapolation on increasingly complex puzzles.These insights and frameworks offer a systematic way to design learning-based systems capable of generalizable reasoning beyond interpolation.
Abstract:We are given a set of elements in a metric space. The distribution of the elements is arbitrary, possibly adversarial. Can we weigh the elements in a way that is resistant to such (adversarial) manipulations? This problem arises in various contexts. For instance, the elements could represent data points, requiring robust domain adaptation. Alternatively, they might represent tasks to be aggregated into a benchmark; or questions about personal political opinions in voting advice applications. This article introduces a theoretical framework for dealing with such problems. We propose clone-proof representation functions as a solution concept. These functions distribute importance across elements of a set such that similar objects (``clones'') share (some of) their weights, thus avoiding a potential bias introduced by their multiplicity. Our framework extends the maximum uncertainty principle to accommodate general metric spaces and includes a set of axioms - symmetry, continuity, and clone-proofness - that guide the construction of representation functions. Finally, we address the existence of representation functions satisfying our axioms in the significant case of Euclidean spaces and propose a general method for their construction.
Abstract:Information retrieval, specifically contract clause retrieval, is foundational to contract drafting because lawyers rarely draft contracts from scratch; instead, they locate and revise the most relevant precedent. We introduce the Atticus Clause Retrieval Dataset (ACORD), the first retrieval benchmark for contract drafting fully annotated by experts. ACORD focuses on complex contract clauses such as Limitation of Liability, Indemnification, Change of Control, and Most Favored Nation. It includes 114 queries and over 126,000 query-clause pairs, each ranked on a scale from 1 to 5 stars. The task is to find the most relevant precedent clauses to a query. The bi-encoder retriever paired with pointwise LLMs re-rankers shows promising results. However, substantial improvements are still needed to effectively manage the complex legal work typically undertaken by lawyers. As the first retrieval benchmark for contract drafting annotated by experts, ACORD can serve as a valuable IR benchmark for the NLP community.
Abstract:In the era of increasing privacy concerns and demand for personalized experiences, traditional Reinforcement Learning with Human Feedback (RLHF) frameworks face significant challenges due to their reliance on centralized data. We introduce Federated Reinforcement Learning with Human Feedback (FedRLHF), a novel framework that decentralizes the RLHF process. FedRLHF enables collaborative policy learning across multiple clients without necessitating the sharing of raw data or human feedback, thereby ensuring robust privacy preservation. Leveraging federated reinforcement learning, each client integrates human feedback locally into their reward functions and updates their policies through personalized RLHF processes. We establish rigorous theoretical foundations for FedRLHF, providing convergence guarantees, and deriving sample complexity bounds that scale efficiently with the number of clients. Empirical evaluations on the MovieLens and IMDb datasets demonstrate that FedRLHF not only preserves user privacy but also achieves performance on par with centralized RLHF, while enhancing personalization across diverse client environments.
Abstract:This work compares large language models (LLMs) and neuro-symbolic approaches in solving Raven's progressive matrices (RPM), a visual abstract reasoning test that involves the understanding of mathematical rules such as progression or arithmetic addition. Providing the visual attributes directly as textual prompts, which assumes an oracle visual perception module, allows us to measure the model's abstract reasoning capability in isolation. Despite providing such compositionally structured representations from the oracle visual perception and advanced prompting techniques, both GPT-4 and Llama-3 70B cannot achieve perfect accuracy on the center constellation of the I-RAVEN dataset. Our analysis reveals that the root cause lies in the LLM's weakness in understanding and executing arithmetic rules. As a potential remedy, we analyze the Abductive Rule Learner with Context-awareness (ARLC), a neuro-symbolic approach that learns to reason with vector-symbolic architectures (VSAs). Here, concepts are represented with distributed vectors s.t. dot products between encoded vectors define a similarity kernel, and simple element-wise operations on the vectors perform addition/subtraction on the encoded values. We find that ARLC achieves almost perfect accuracy on the center constellation of I-RAVEN, demonstrating a high fidelity in arithmetic rules. To stress the length generalization capabilities of the models, we extend the RPM tests to larger matrices (3x10 instead of typical 3x3) and larger dynamic ranges of the attribute values (from 10 up to 1000). We find that the LLM's accuracy of solving arithmetic rules drops to sub-10%, especially as the dynamic range expands, while ARLC can maintain a high accuracy due to emulating symbolic computations on top of properly distributed representations. Our code is available at https://github.com/IBM/raven-large-language-models.
Abstract:Several self-supervised learning (SSL) approaches have shown that redundancy reduction in the feature embedding space is an effective tool for representation learning. However, these methods consider a narrow notion of redundancy, focusing on pairwise correlations between features. To address this limitation, we formalize the notion of embedding space redundancy and introduce redundancy measures that capture more complex, higher-order dependencies. We mathematically analyze the relationships between these metrics, and empirically measure these redundancies in the embedding spaces of common SSL methods. Based on our findings, we propose Self Supervised Learning with Predictability Minimization (SSLPM) as a method for reducing redundancy in the embedding space. SSLPM combines an encoder network with a predictor engaging in a competitive game of reducing and exploiting dependencies respectively. We demonstrate that SSLPM is competitive with state-of-the-art methods and find that the best performing SSL methods exhibit low embedding space redundancy, suggesting that even methods without explicit redundancy reduction mechanisms perform redundancy reduction implicitly.
Abstract:We introduce Audio Atlas, an interactive web application for visualizing audio data using text-audio embeddings. Audio Atlas is designed to facilitate the exploration and analysis of audio datasets using a contrastive embedding model and a vector database for efficient data management and semantic search. The system maps audio embeddings into a two-dimensional space and leverages DeepScatter for dynamic visualization. Designed for extensibility, Audio Atlas allows easy integration of new datasets, enabling users to better understand their audio data and identify both patterns and outliers. We open-source the codebase of Audio Atlas, and provide an initial implementation containing various audio and music datasets.
Abstract:While autonomous agents often surpass humans in their ability to handle vast and complex data, their potential misalignment (i.e., lack of transparency regarding their true objective) has thus far hindered their use in critical applications such as social decision processes. More importantly, existing alignment methods provide no formal guarantees on the safety of such models. Drawing from utility and social choice theory, we provide a novel quantitative definition of alignment in the context of social decision-making. Building on this definition, we introduce probably approximately aligned (i.e., near-optimal) policies, and we derive a sufficient condition for their existence. Lastly, recognizing the practical difficulty of satisfying this condition, we introduce the relaxed concept of safe (i.e., nondestructive) policies, and we propose a simple yet robust method to safeguard the black-box policy of any autonomous agent, ensuring all its actions are verifiably safe for the society.
Abstract:Recent advances in Graph Neural Networks (GNNs) and Graph Transformers (GTs) have been driven by innovations in architectures and Positional Encodings (PEs), which are critical for augmenting node features and capturing graph topology. PEs are essential for GTs, where topological information would otherwise be lost without message-passing. However, PEs are often tested alongside novel architectures, making it difficult to isolate their effect on established models. To address this, we present a comprehensive benchmark of PEs in a unified framework that includes both message-passing GNNs and GTs. We also establish theoretical connections between MPNNs and GTs and introduce a sparsified GRIT attention mechanism to examine the influence of global connectivity. Our findings demonstrate that previously untested combinations of GNN architectures and PEs can outperform existing methods and offer a more comprehensive picture of the state-of-the-art. To support future research and experimentation in our framework, we make the code publicly available.