Abstract:Text-to-video (T2V) generation aims to synthesize videos with high visual quality and temporal consistency that are semantically aligned with input text. Reward-based post-training has emerged as a promising direction to improve the quality and semantic alignment of generated videos. However, recent methods either rely on large-scale human preference annotations or operate on misaligned embeddings from pre-trained vision-language models, leading to limited scalability or suboptimal supervision. We present $\texttt{PISCES}$, an annotation-free post-training algorithm that addresses these limitations via a novel Dual Optimal Transport (OT)-aligned Rewards module. To align reward signals with human judgment, $\texttt{PISCES}$ uses OT to bridge text and video embeddings at both distributional and discrete token levels, enabling reward supervision to fulfill two objectives: (i) a Distributional OT-aligned Quality Reward that captures overall visual quality and temporal coherence; and (ii) a Discrete Token-level OT-aligned Semantic Reward that enforces semantic, spatio-temporal correspondence between text and video tokens. To our knowledge, $\texttt{PISCES}$ is the first to improve annotation-free reward supervision in generative post-training through the lens of OT. Experiments on both short- and long-video generation show that $\texttt{PISCES}$ outperforms both annotation-based and annotation-free methods on VBench across Quality and Semantic scores, with human preference studies further validating its effectiveness. We show that the Dual OT-aligned Rewards module is compatible with multiple optimization paradigms, including direct backpropagation and reinforcement learning fine-tuning.
Abstract:A fundamental challenge in text-to-3D face generation is achieving high-quality geometry. The core difficulty lies in the arbitrary and intricate distribution of vertices in 3D space, making it challenging for existing models to establish clean connectivity and resulting in suboptimal geometry. To address this, our core insight is to simplify the underlying geometric structure by constraining the distribution onto a simple and regular manifold, a topological sphere. Building on this, we first propose the Spherical Geometry Representation, a novel face representation that anchors geometric signals to uniform spherical coordinates. This guarantees a regular point distribution, from which the mesh connectivity can be robustly reconstructed. Critically, this canonical sphere can be seamlessly unwrapped into a 2D map, creating a perfect synergy with powerful 2D generative models. We then introduce Spherical Geometry Diffusion, a conditional diffusion framework built upon this 2D map. It enables diverse and controllable generation by jointly modeling geometry and texture, where the geometry explicitly conditions the texture synthesis process. Our method's effectiveness is demonstrated through its success in a wide range of tasks: text-to-3D generation, face reconstruction, and text-based 3D editing. Extensive experiments show that our approach substantially outperforms existing methods in geometric quality, textual fidelity, and inference efficiency.
Abstract:With Neural Radiance Fields (NeRFs) arising as a powerful 3D representation, research has investigated its various downstream tasks, including inpainting NeRFs with 2D images. Despite successful efforts addressing the view consistency and geometry quality, prior methods yet suffer from occlusion in NeRF inpainting tasks, where 2D prior is severely limited in forming a faithful reconstruction of the scene to inpaint. To address this, we propose a novel approach that enables cross-view information sharing during knowledge distillation from a diffusion model, effectively propagating occluded information across limited views. Additionally, to align the distillation direction across multiple sampled views, we apply a grid-based denoising strategy and incorporate additional rendered views to enhance cross-view consistency. To assess our approach's capability of handling occlusion cases, we construct a dataset consisting of challenging scenes with severe occlusion, in addition to existing datasets. Compared with baseline methods, our method demonstrates better performance in cross-view consistency and faithfulness in reconstruction, while preserving high rendering quality and fidelity.
Abstract:We challenge the prevailing assumption that LLMs must rely fully on sub-word tokens for high-quality text generation. To this end, we propose the "Generative Pretrained Thoughtformer" (GPTHF), a hierarchical transformer language model capable of text generation by compressing text into sentence embeddings and employing a sentence attention mechanism. GPTHF retains GPT's architecture, modifying only token interactions via dynamic sparse attention masks. Our experiments show that GPTHF achieves an up to an order of magnitude improvement in FLOPs efficiency and a threefold increase in runtime speed compared to equally-sized GPT models in the low-size regime. This is achieved through a unique generation method that caches and reuses sentence embeddings, allowing significant portions of the input to bypass large parts of the network.