Abstract:Meeting online is becoming the new normal. Creating an immersive experience for online meetings is a necessity towards more diverse and seamless environments. Efficient photorealistic rendering of human 3D dynamics is the core of immersive meetings. Current popular applications achieve real-time conferencing but fall short in delivering photorealistic human dynamics, either due to limited 2D space or the use of avatars that lack realistic interactions between participants. Recent advances in neural rendering, such as the Neural Radiance Field (NeRF), offer the potential for greater realism in metaverse meetings. However, the slow rendering speed of NeRF poses challenges for real-time conferencing. We envision a pipeline for a future extended reality metaverse conferencing system that leverages monocular video acquisition and free-viewpoint synthesis to enhance data and hardware efficiency. Towards an immersive conferencing experience, we explore an accelerated NeRF-based free-viewpoint synthesis algorithm for rendering photorealistic human dynamics more efficiently. We show that our algorithm achieves comparable rendering quality while performing training and inference 44.5% and 213% faster than state-of-the-art methods, respectively. Our exploration provides a design basis for constructing metaverse conferencing systems that can handle complex application scenarios, including dynamic scene relighting with customized themes and multi-user conferencing that harmonizes real-world people into an extended world.
Abstract:SSD is one of the state-of-the-art object detection algorithms, and it combines high detection accuracy with real-time speed. However, it is widely recognized that SSD is less accurate in detecting small objects compared to large objects, because it ignores the context from outside the proposal boxes. In this paper, we present CSSD--a shorthand for context-aware single-shot multibox object detector. CSSD is built on top of SSD, with additional layers modeling multi-scale contexts. We describe two variants of CSSD, which differ in their context layers, using dilated convolution layers (DiCSSD) and deconvolution layers (DeCSSD) respectively. The experimental results show that the multi-scale context modeling significantly improves the detection accuracy. In addition, we study the relationship between effective receptive fields (ERFs) and the theoretical receptive fields (TRFs), particularly on a VGGNet. The empirical results further strengthen our conclusion that SSD coupled with context layers achieves better detection results especially for small objects ($+3.2\% {\rm AP}_{@0.5}$ on MS-COCO compared to the newest SSD), while maintaining comparable runtime performance.