Abstract:Integrating vision models into large language models (LLMs) has sparked significant interest in creating vision-language foundation models, especially for video understanding. Recent methods often utilize memory banks to handle untrimmed videos for video-level understanding. However, they typically compress visual memory using similarity-based greedy approaches, which can overlook the contextual importance of individual tokens. To address this, we introduce an efficient LLM adapter designed for video-level understanding of untrimmed videos that prioritizes the contextual relevance of spatio-temporal tokens. Our framework leverages scorer networks to selectively compress the visual memory bank and filter spatial tokens based on relevance, using a differentiable Top-K operator for end-to-end training. Across three key video-level understanding tasks$\unicode{x2013}$ untrimmed video classification, video question answering, and video captioning$\unicode{x2013}$our method achieves competitive or superior results on four large-scale datasets while reducing computational overhead by up to 34%. The code will be available soon on GitHub.
Abstract:With Neural Radiance Fields (NeRFs) arising as a powerful 3D representation, research has investigated its various downstream tasks, including inpainting NeRFs with 2D images. Despite successful efforts addressing the view consistency and geometry quality, prior methods yet suffer from occlusion in NeRF inpainting tasks, where 2D prior is severely limited in forming a faithful reconstruction of the scene to inpaint. To address this, we propose a novel approach that enables cross-view information sharing during knowledge distillation from a diffusion model, effectively propagating occluded information across limited views. Additionally, to align the distillation direction across multiple sampled views, we apply a grid-based denoising strategy and incorporate additional rendered views to enhance cross-view consistency. To assess our approach's capability of handling occlusion cases, we construct a dataset consisting of challenging scenes with severe occlusion, in addition to existing datasets. Compared with baseline methods, our method demonstrates better performance in cross-view consistency and faithfulness in reconstruction, while preserving high rendering quality and fidelity.
Abstract:Meeting online is becoming the new normal. Creating an immersive experience for online meetings is a necessity towards more diverse and seamless environments. Efficient photorealistic rendering of human 3D dynamics is the core of immersive meetings. Current popular applications achieve real-time conferencing but fall short in delivering photorealistic human dynamics, either due to limited 2D space or the use of avatars that lack realistic interactions between participants. Recent advances in neural rendering, such as the Neural Radiance Field (NeRF), offer the potential for greater realism in metaverse meetings. However, the slow rendering speed of NeRF poses challenges for real-time conferencing. We envision a pipeline for a future extended reality metaverse conferencing system that leverages monocular video acquisition and free-viewpoint synthesis to enhance data and hardware efficiency. Towards an immersive conferencing experience, we explore an accelerated NeRF-based free-viewpoint synthesis algorithm for rendering photorealistic human dynamics more efficiently. We show that our algorithm achieves comparable rendering quality while performing training and inference 44.5% and 213% faster than state-of-the-art methods, respectively. Our exploration provides a design basis for constructing metaverse conferencing systems that can handle complex application scenarios, including dynamic scene relighting with customized themes and multi-user conferencing that harmonizes real-world people into an extended world.