Abstract:This paper introduces a new video question-answering (VQA) dataset that challenges models to leverage procedural knowledge for complex reasoning. It requires recognizing visual entities, generating hypotheses, and performing contextual, causal, and counterfactual reasoning. To address this, we propose neuro symbolic reasoning module that integrates neural networks and LLM-driven constrained reasoning over variables for interpretable answer generation. Results show that combining LLMs with structured knowledge reasoning with logic enhances procedural reasoning on the STAR benchmark and our dataset. Code and dataset at https://github.com/LUNAProject22/KML soon.
Abstract:Anticipating future events is crucial for various application domains such as healthcare, smart home technology, and surveillance. Narrative event descriptions provide context-rich information, enhancing a system's future planning and decision-making capabilities. We propose a novel task: $\textit{long-term future narration generation}$, which extends beyond traditional action anticipation by generating detailed narrations of future daily activities. We introduce a visual-language model, ViNa, specifically designed to address this challenging task. ViNa integrates long-term videos and corresponding narrations to generate a sequence of future narrations that predict subsequent events and actions over extended time horizons. ViNa extends existing multimodal models that perform only short-term predictions or describe observed videos by generating long-term future narrations for a broader range of daily activities. We also present a novel downstream application that leverages the generated narrations called future video retrieval to help users improve planning for a task by visualizing the future. We evaluate future narration generation on the largest egocentric dataset Ego4D.
Abstract:Large language models demonstrate remarkable capabilities across various domains, especially mathematics and logic reasoning. However, current evaluations overlook physics-based reasoning - a complex task requiring physics theorems and constraints. We present PhysReason, a 1,200-problem benchmark comprising knowledge-based (25%) and reasoning-based (75%) problems, where the latter are divided into three difficulty levels (easy, medium, hard). Notably, problems require an average of 8.1 solution steps, with hard requiring 15.6, reflecting the complexity of physics-based reasoning. We propose the Physics Solution Auto Scoring Framework, incorporating efficient answer-level and comprehensive step-level evaluations. Top-performing models like Deepseek-R1, Gemini-2.0-Flash-Thinking, and o3-mini-high achieve less than 60% on answer-level evaluation, with performance dropping from knowledge questions (75.11%) to hard problems (31.95%). Through step-level evaluation, we identified four key bottlenecks: Physics Theorem Application, Physics Process Understanding, Calculation, and Physics Condition Analysis. These findings position PhysReason as a novel and comprehensive benchmark for evaluating physics-based reasoning capabilities in large language models. Our code and data will be published at https:/dxzxy12138.github.io/PhysReason.
Abstract:Multimodal Large Language Models (MLLMs) have made significant advancements, demonstrating powerful capabilities in processing and understanding multimodal data. Fine-tuning MLLMs with Federated Learning (FL) allows for expanding the training data scope by including private data sources, thereby enhancing their practical applicability in privacy-sensitive domains. However, current research remains in the early stage, particularly in addressing the \textbf{multimodal heterogeneities} in real-world applications. In this paper, we introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios, laying the groundwork for the research in the field. Our benchmark encompasses two datasets, five comparison baselines, and four multimodal scenarios, incorporating over ten types of modal heterogeneities. To address the challenges posed by modal heterogeneity, we develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies. Extensive experimental results show that our proposed FL paradigm improves the performance of MLLMs by broadening the range of training data and mitigating multimodal heterogeneity. Code is available at https://github.com/1xbq1/FedMLLM
Abstract:Complex visual reasoning and question answering (VQA) is a challenging task that requires compositional multi-step processing and higher-level reasoning capabilities beyond the immediate recognition and localization of objects and events. Here, we introduce a fully neural Iterative and Parallel Reasoning Mechanism (IPRM) that combines two distinct forms of computation -- iterative and parallel -- to better address complex VQA scenarios. Specifically, IPRM's "iterative" computation facilitates compositional step-by-step reasoning for scenarios wherein individual operations need to be computed, stored, and recalled dynamically (e.g. when computing the query "determine the color of pen to the left of the child in red t-shirt sitting at the white table"). Meanwhile, its "parallel" computation allows for the simultaneous exploration of different reasoning paths and benefits more robust and efficient execution of operations that are mutually independent (e.g. when counting individual colors for the query: "determine the maximum occurring color amongst all t-shirts"). We design IPRM as a lightweight and fully-differentiable neural module that can be conveniently applied to both transformer and non-transformer vision-language backbones. It notably outperforms prior task-specific methods and transformer-based attention modules across various image and video VQA benchmarks testing distinct complex reasoning capabilities such as compositional spatiotemporal reasoning (AGQA), situational reasoning (STAR), multi-hop reasoning generalization (CLEVR-Humans) and causal event linking (CLEVRER-Humans). Further, IPRM's internal computations can be visualized across reasoning steps, aiding interpretability and diagnosis of its errors.
Abstract:Graph based representation has been widely used in modelling spatio-temporal relationships in video understanding. Although effective, existing graph-based approaches focus on capturing the human-object relationships while ignoring fine-grained semantic properties of the action components. These semantic properties are crucial for understanding the current situation, such as where does the action takes place, what tools are used and functional properties of the objects. In this work, we propose a graph-based representation called Situational Scene Graph (SSG) to encode both human-object relationships and the corresponding semantic properties. The semantic details are represented as predefined roles and values inspired by situation frame, which is originally designed to represent a single action. Based on our proposed representation, we introduce the task of situational scene graph generation and propose a multi-stage pipeline Interactive and Complementary Network (InComNet) to address the task. Given that the existing datasets are not applicable to the task, we further introduce a SSG dataset whose annotations consist of semantic role-value frames for human, objects and verb predicates of human-object relations. Finally, we demonstrate the effectiveness of our proposed SSG representation by testing on different downstream tasks. Experimental results show that the unified representation can not only benefit predicate classification and semantic role-value classification, but also benefit reasoning tasks on human-centric situation understanding. We will release the code and the dataset soon.
Abstract:Most existing studies on few-shot learning focus on unimodal settings, where models are trained to generalize on unseen data using only a small number of labeled examples from the same modality. However, real-world data are inherently multi-modal, and unimodal approaches limit the practical applications of few-shot learning. To address this gap, this paper introduces the Cross-modal Few-Shot Learning (CFSL) task, which aims to recognize instances from multiple modalities when only a few labeled examples are available. This task presents additional challenges compared to classical few-shot learning due to the distinct visual characteristics and structural properties unique to each modality. To tackle these challenges, we propose a Generative Transfer Learning (GTL) framework consisting of two stages: the first stage involves training on abundant unimodal data, and the second stage focuses on transfer learning to adapt to novel data. Our GTL framework jointly estimates the latent shared concept across modalities and in-modality disturbance in both stages, while freezing the generative module during the transfer phase to maintain the stability of the learned representations and prevent overfitting to the limited multi-modal samples. Our finds demonstrate that GTL has superior performance compared to state-of-the-art methods across four distinct multi-modal datasets: Sketchy, TU-Berlin, Mask1K, and SKSF-A. Additionally, the results suggest that the model can estimate latent concepts from vast unimodal data and generalize these concepts to unseen modalities using only a limited number of available samples, much like human cognitive processes.
Abstract:Situation recognition refers to the ability of an agent to identify and understand various situations or contexts based on available information and sensory inputs. It involves the cognitive process of interpreting data from the environment to determine what is happening, what factors are involved, and what actions caused those situations. This interpretation of situations is formulated as a semantic role labeling problem in computer vision-based situation recognition. Situations depicted in images and videos hold pivotal information, essential for various applications like image and video captioning, multimedia retrieval, autonomous systems and event monitoring. However, existing methods often struggle with ambiguity and lack of context in generating meaningful and accurate predictions. Leveraging multimodal models such as CLIP, we propose ClipSitu, which sidesteps the need for full fine-tuning and achieves state-of-the-art results in situation recognition and localization tasks. ClipSitu harnesses CLIP-based image, verb, and role embeddings to predict nouns fulfilling all the roles associated with a verb, providing a comprehensive understanding of depicted scenarios. Through a cross-attention Transformer, ClipSitu XTF enhances the connection between semantic role queries and visual token representations, leading to superior performance in situation recognition. We also propose a verb-wise role prediction model with near-perfect accuracy to create an end-to-end framework for producing situational summaries for out-of-domain images. We show that situational summaries empower our ClipSitu models to produce structured descriptions with reduced ambiguity compared to generic captions. Finally, we extend ClipSitu to video situation recognition to showcase its versatility and produce comparable performance to state-of-the-art methods.
Abstract:Causal video question answering (QA) has garnered increasing interest, yet existing datasets often lack depth in causal reasoning analysis. To address this gap, we capitalize on the unique properties of cartoons and construct CausalChaos!, a novel, challenging causal Why-QA dataset built upon the iconic "Tom and Jerry" cartoon series. With thoughtful questions and multi-level answers, our dataset contains much longer causal chains embedded in dynamic interactions and visuals, at the same time principles of animation allows animators to create well-defined, unambiguous causal relationships. These factors allow models to solve more challenging, yet well-defined causal relationships. We also introduce hard negative mining, including CausalConfusion version. While models perform well, there is much room for improvement, especially, on open-ended answers. We identify more advanced/explicit causal relationship modeling and joint modeling of vision and language as the immediate areas for future efforts to focus upon. Along with the other complementary datasets, our new challenging dataset will pave the way for these developments in the field. We will release our dataset, codes, and models to help future efforts in this domain.
Abstract:Zero-shot open-ended inference on untrimmed videos poses a significant challenge, especially when no annotated data is utilized to navigate the inference direction. In this work, we aim to address this underexplored domain by introducing an adaptable framework that efficiently combines both the frozen vision-language (VL) model and off-the-shelf large language model (LLM) for conducting zero-shot open-ended inference tasks without requiring any additional training or fine-tuning. Our comprehensive experiments span various video action datasets for goal inference and action recognition tasks. The results demonstrate the framework's superior performance in goal inference compared to conventional vision-language models in open-ended and close-ended scenarios. Notably, the proposed framework exhibits the capability to generalize effectively to action recognition tasks, underscoring its versatility and potential contributions to advancing the video-based zero-shot understanding.