Abstract:Few-shot anomaly detection (FSAD) aims to detect unseen anomaly regions with the guidance of very few normal support images from the same class. Existing FSAD methods usually find anomalies by directly designing complex text prompts to align them with visual features under the prevailing large vision-language model paradigm. However, these methods, almost always, neglect intrinsic contextual information in visual features, e.g., the interaction relationships between different vision layers, which is an important clue for detecting anomalies comprehensively. To this end, we propose a kernel-aware graph prompt learning framework, termed as KAG-prompt, by reasoning the cross-layer relations among visual features for FSAD. Specifically, a kernel-aware hierarchical graph is built by taking the different layer features focusing on anomalous regions of different sizes as nodes, meanwhile, the relationships between arbitrary pairs of nodes stand for the edges of the graph. By message passing over this graph, KAG-prompt can capture cross-layer contextual information, thus leading to more accurate anomaly prediction. Moreover, to integrate the information of multiple important anomaly signals in the prediction map, we propose a novel image-level scoring method based on multi-level information fusion. Extensive experiments on MVTecAD and VisA datasets show that KAG-prompt achieves state-of-the-art FSAD results for image-level/pixel-level anomaly detection. Code is available at https://github.com/CVL-hub/KAG-prompt.git.
Abstract:Event-based Action Recognition (EAR) possesses the advantages of high-temporal resolution capturing and privacy preservation compared with traditional action recognition. Current leading EAR solutions typically follow two regimes: project unconstructed event streams into dense constructed event frames and adopt powerful frame-specific networks, or employ lightweight point-specific networks to handle sparse unconstructed event points directly. However, such two regimes are blind to a fundamental issue: failing to accommodate the unique dense temporal and sparse spatial properties of asynchronous event data. In this article, we present a synergy-aware framework, i.e., EventCrab, that adeptly integrates the "lighter" frame-specific networks for dense event frames with the "heavier" point-specific networks for sparse event points, balancing accuracy and efficiency. Furthermore, we establish a joint frame-text-point representation space to bridge distinct event frames and points. In specific, to better exploit the unique spatiotemporal relationships inherent in asynchronous event points, we devise two strategies for the "heavier" point-specific embedding: i) a Spiking-like Context Learner (SCL) that extracts contextualized event points from raw event streams. ii) an Event Point Encoder (EPE) that further explores event-point long spatiotemporal features in a Hilbert-scan way. Experiments on four datasets demonstrate the significant performance of our proposed EventCrab, particularly gaining improvements of 5.17% on SeAct and 7.01% on HARDVS.
Abstract:Diffusion models achieve impressive performance in human motion generation. However, current approaches typically ignore the significance of frequency-domain information in capturing fine-grained motions within the latent space (e.g., low frequencies correlate with static poses, and high frequencies align with fine-grained motions). Additionally, there is a semantic discrepancy between text and motion, leading to inconsistency between the generated motions and the text descriptions. In this work, we propose a novel diffusion-based FTMoMamba framework equipped with a Frequency State Space Model (FreqSSM) and a Text State Space Model (TextSSM). Specifically, to learn fine-grained representation, FreqSSM decomposes sequences into low-frequency and high-frequency components, guiding the generation of static pose (e.g., sits, lay) and fine-grained motions (e.g., transition, stumble), respectively. To ensure the consistency between text and motion, TextSSM encodes text features at the sentence level, aligning textual semantics with sequential features. Extensive experiments show that FTMoMamba achieves superior performance on the text-to-motion generation task, especially gaining the lowest FID of 0.181 (rather lower than 0.421 of MLD) on the HumanML3D dataset.
Abstract:Vision-and-Language Navigation (VLN), where an agent follows instructions to reach a target destination, has recently seen significant advancements. In contrast to navigation in discrete environments with predefined trajectories, VLN in Continuous Environments (VLN-CE) presents greater challenges, as the agent is free to navigate any unobstructed location and is more vulnerable to visual occlusions or blind spots. Recent approaches have attempted to address this by imagining future environments, either through predicted future visual images or semantic features, rather than relying solely on current observations. However, these RGB-based and feature-based methods lack intuitive appearance-level information or high-level semantic complexity crucial for effective navigation. To overcome these limitations, we introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN, which enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features. UnitedVLN employs two key schemes: search-then-query sampling and separate-then-united rendering, which facilitate efficient exploitation of neural primitives, helping to integrate both appearance and semantic information for more robust navigation. Extensive experiments demonstrate that UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
Abstract:Multimodal Large Language Models (MLLMs) have made significant advancements, demonstrating powerful capabilities in processing and understanding multimodal data. Fine-tuning MLLMs with Federated Learning (FL) allows for expanding the training data scope by including private data sources, thereby enhancing their practical applicability in privacy-sensitive domains. However, current research remains in the early stage, particularly in addressing the \textbf{multimodal heterogeneities} in real-world applications. In this paper, we introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios, laying the groundwork for the research in the field. Our benchmark encompasses two datasets, five comparison baselines, and four multimodal scenarios, incorporating over ten types of modal heterogeneities. To address the challenges posed by modal heterogeneity, we develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies. Extensive experimental results show that our proposed FL paradigm improves the performance of MLLMs by broadening the range of training data and mitigating multimodal heterogeneity. Code is available at https://github.com/1xbq1/FedMLLM
Abstract:Drone-based object detection in adverse weather conditions is crucial for enhancing drones' environmental perception, yet it remains largely unexplored due to the lack of relevant benchmarks. To bridge this gap, we introduce HazyDet, a large-scale dataset tailored for drone-based object detection in hazy scenes. It encompasses 383,000 real-world instances, collected from both naturally hazy environments and normal scenes with synthetically imposed haze effects to simulate adverse weather conditions. By observing the significant variations in object scale and clarity under different depth and haze conditions, we designed a Depth Conditioned Detector (DeCoDet) to incorporate this prior knowledge. DeCoDet features a Multi-scale Depth-aware Detection Head that seamlessly integrates depth perception, with the resulting depth cues harnessed by a dynamic Depth Condition Kernel module. Furthermore, we propose a Scale Invariant Refurbishment Loss to facilitate the learning of robust depth cues from pseudo-labels. Extensive evaluations on the HazyDet dataset demonstrate the flexibility and effectiveness of our method, yielding significant performance improvements. Our dataset and toolkit are available at https://github.com/GrokCV/HazyDet.
Abstract:Land Surface Temperature (LST) is a critical parameter for environmental studies, but obtaining high-resolution LST data remains challenging due to the spatio-temporal trade-off in satellite remote sensing. Guided LST downscaling has emerged as a solution, but current methods often neglect spatial non-stationarity and lack a open-source ecosystem for deep learning methods. To address these limitations, we propose the Modality-Conditional Large Selective Kernel (MoCoLSK) Networks, a novel architecture that dynamically fuses multi-modal data through modality-conditioned projections. MoCoLSK re-engineers our previous LSKNet to achieve a confluence of dynamic receptive field adjustment and multi-modal feature integration, leading to enhanced LST prediction accuracy. Furthermore, we establish the GrokLST project, a comprehensive open-source ecosystem featuring the GrokLST dataset, a high-resolution benchmark, and the GrokLST toolkit, an open-source PyTorch-based toolkit encapsulating MoCoLSK alongside 40+ state-of-the-art approaches. Extensive experimental results validate MoCoLSK's effectiveness in capturing complex dependencies and subtle variations within multispectral data, outperforming existing methods in LST downscaling. Our code, dataset, and toolkit are available at https://github.com/GrokCV/GrokLST.
Abstract:Dense-localization Audio-Visual Events (DAVE) aims to identify time boundaries and corresponding categories for events that can be heard and seen concurrently in an untrimmed video. Existing methods typically encode audio and visual representation separately without any explicit cross-modal alignment constraint. Then they adopt dense cross-modal attention to integrate multimodal information for DAVE. Thus these methods inevitably aggregate irrelevant noise and events, especially in complex and long videos, leading to imprecise detection. In this paper, we present LOCO, a Locality-aware cross-modal Correspondence learning framework for DAVE. The core idea is to explore local temporal continuity nature of audio-visual events, which serves as informative yet free supervision signals to guide the filtering of irrelevant information and inspire the extraction of complementary multimodal information during both unimodal and cross-modal learning stages. i) Specifically, LOCO applies Locality-aware Correspondence Correction (LCC) to uni-modal features via leveraging cross-modal local-correlated properties without any extra annotations. This enforces uni-modal encoders to highlight similar semantics shared by audio and visual features. ii) To better aggregate such audio and visual features, we further customize Cross-modal Dynamic Perception layer (CDP) in cross-modal feature pyramid to understand local temporal patterns of audio-visual events by imposing local consistency within multimodal features in a data-driven manner. By incorporating LCC and CDP, LOCO provides solid performance gains and outperforms existing methods for DAVE. The source code will be released.
Abstract:The SkatingVerse Workshop & Challenge aims to encourage research in developing novel and accurate methods for human action understanding. The SkatingVerse dataset used for the SkatingVerse Challenge has been publicly released. There are two subsets in the dataset, i.e., the training subset and testing subset. The training subsets consists of 19,993 RGB video sequences, and the testing subsets consists of 8,586 RGB video sequences. Around 10 participating teams from the globe competed in the SkatingVerse Challenge. In this paper, we provide a brief summary of the SkatingVerse Workshop & Challenge including brief introductions to the top three methods. The submission leaderboard will be reopened for researchers that are interested in the human action understanding challenge. The benchmark dataset and other information can be found at: https://skatingverse.github.io/.
Abstract:Panoramic Activity Recognition (PAR) aims to identify multi-granularity behaviors performed by multiple persons in panoramic scenes, including individual activities, group activities, and global activities. Previous methods 1) heavily rely on manually annotated detection boxes in training and inference, hindering further practical deployment; or 2) directly employ normal detectors to detect multiple persons with varying size and spatial occlusion in panoramic scenes, blocking the performance gain of PAR. To this end, we consider learning a detector adapting varying-size occluded persons, which is optimized along with the recognition module in the all-in-one framework. Therefore, we propose a novel Adapt-Focused bi-Propagating Prototype learning (AdaFPP) framework to jointly recognize individual, group, and global activities in panoramic activity scenes by learning an adapt-focused detector and multi-granularity prototypes as the pretext tasks in an end-to-end way. Specifically, to accommodate the varying sizes and spatial occlusion of multiple persons in crowed panoramic scenes, we introduce a panoramic adapt-focuser, achieving the size-adapting detection of individuals by comprehensively selecting and performing fine-grained detections on object-dense sub-regions identified through original detections. In addition, to mitigate information loss due to inaccurate individual localizations, we introduce a bi-propagation prototyper that promotes closed-loop interaction and informative consistency across different granularities by facilitating bidirectional information propagation among the individual, group, and global levels. Extensive experiments demonstrate the significant performance of AdaFPP and emphasize its powerful applicability for PAR.