Abstract:Dense-localization Audio-Visual Events (DAVE) aims to identify time boundaries and corresponding categories for events that can be heard and seen concurrently in an untrimmed video. Existing methods typically encode audio and visual representation separately without any explicit cross-modal alignment constraint. Then they adopt dense cross-modal attention to integrate multimodal information for DAVE. Thus these methods inevitably aggregate irrelevant noise and events, especially in complex and long videos, leading to imprecise detection. In this paper, we present LOCO, a Locality-aware cross-modal Correspondence learning framework for DAVE. The core idea is to explore local temporal continuity nature of audio-visual events, which serves as informative yet free supervision signals to guide the filtering of irrelevant information and inspire the extraction of complementary multimodal information during both unimodal and cross-modal learning stages. i) Specifically, LOCO applies Locality-aware Correspondence Correction (LCC) to uni-modal features via leveraging cross-modal local-correlated properties without any extra annotations. This enforces uni-modal encoders to highlight similar semantics shared by audio and visual features. ii) To better aggregate such audio and visual features, we further customize Cross-modal Dynamic Perception layer (CDP) in cross-modal feature pyramid to understand local temporal patterns of audio-visual events by imposing local consistency within multimodal features in a data-driven manner. By incorporating LCC and CDP, LOCO provides solid performance gains and outperforms existing methods for DAVE. The source code will be released.
Abstract:Recent few-shot action recognition (FSAR) methods achieve promising performance by performing semantic matching on learned discriminative features. However, most FSAR methods focus on single-scale (e.g., frame-level, segment-level, \etc) feature alignment, which ignores that human actions with the same semantic may appear at different velocities. To this end, we develop a novel Multi-Velocity Progressive-alignment (MVP-Shot) framework to progressively learn and align semantic-related action features at multi-velocity levels. Concretely, a Multi-Velocity Feature Alignment (MVFA) module is designed to measure the similarity between features from support and query videos with different velocity scales and then merge all similarity scores in a residual fashion. To avoid the multiple velocity features deviating from the underlying motion semantic, our proposed Progressive Semantic-Tailored Interaction (PSTI) module injects velocity-tailored text information into the video feature via feature interaction on channel and temporal domains at different velocities. The above two modules compensate for each other to predict query categories more accurately under the few-shot settings. Experimental results show our method outperforms current state-of-the-art methods on multiple standard few-shot benchmarks (i.e., HMDB51, UCF101, Kinetics, and SSv2-small).