Abstract:Large language models, when trained with reinforcement learning, demonstrate advanced problem-solving capabilities through reasoning techniques like chain of thoughts and reflection. However, it is unclear how these reasoning capabilities extend to social intelligence. In this study, we investigate how reasoning influences model outcomes in social dilemmas. First, we examine the effects of chain-of-thought and reflection techniques in a public goods game. We then extend our analysis to six economic games on cooperation and punishment, comparing off-the-shelf non-reasoning and reasoning models. We find that reasoning models reduce cooperation and norm enforcement, prioritizing individual rationality. Consequently, groups with more reasoning models exhibit less cooperation and lower gains through repeated interactions. These behaviors parallel human tendencies of "spontaneous giving and calculated greed." Our results suggest the need for AI architectures that incorporate social intelligence alongside reasoning capabilities to ensure that AI supports, rather than disrupts, human cooperative intuition.
Abstract:Object extraction and segmentation from remote sensing (RS) images is a critical yet challenging task in urban environment monitoring. Urban morphology is inherently complex, with irregular objects of diverse shapes and varying scales. These challenges are amplified by heterogeneity and scale disparities across RS data sources, including sensors, platforms, and modalities, making accurate object segmentation particularly demanding. While the Segment Anything Model (SAM) has shown significant potential in segmenting complex scenes, its performance in handling form-varying objects remains limited due to manual-interactive prompting. To this end, we propose UrbanSAM, a customized version of SAM specifically designed to analyze complex urban environments while tackling scaling effects from remotely sensed observations. Inspired by multi-resolution analysis (MRA) theory, UrbanSAM incorporates a novel learnable prompter equipped with a Uscaling-Adapter that adheres to the invariance criterion, enabling the model to capture multiscale contextual information of objects and adapt to arbitrary scale variations with theoretical guarantees. Furthermore, features from the Uscaling-Adapter and the trunk encoder are aligned through a masked cross-attention operation, allowing the trunk encoder to inherit the adapter's multiscale aggregation capability. This synergy enhances the segmentation performance, resulting in more powerful and accurate outputs, supported by the learned adapter. Extensive experimental results demonstrate the flexibility and superior segmentation performance of the proposed UrbanSAM on a global-scale dataset, encompassing scale-varying urban objects such as buildings, roads, and water.
Abstract:Speculative sampling has emerged as an important technique for accelerating the auto-regressive generation process of large language models (LLMs) by utilizing a draft-then-verify mechanism to produce multiple tokens per forward pass. While state-of-the-art speculative sampling methods use only a single layer and a language modeling (LM) head as the draft model to achieve impressive layer compression, their efficiency gains are substantially reduced for large-vocabulary LLMs, such as Llama-3-8B with a vocabulary of 128k tokens. To address this, we present FR-Spec, a frequency-ranked speculative sampling framework that optimizes draft candidate selection through vocabulary space compression. By constraining the draft search to a frequency-prioritized token subset, our method reduces LM Head computation overhead by 75% while ensuring the equivalence of the final output distribution. Experiments across multiple datasets demonstrate an average of 1.12$\times$ speedup over the state-of-the-art speculative sampling method EAGLE-2.
Abstract:Triton, a high-level Python-like language designed for building efficient GPU kernels, is widely adopted in deep learning frameworks due to its portability, flexibility, and accessibility. However, programming and parallel optimization still require considerable trial and error from Triton developers. Despite advances in large language models (LLMs) for conventional code generation, these models struggle to generate accurate, performance-optimized Triton code, as they lack awareness of its specifications and the complexities of GPU programming. More critically, there is an urgent need for systematic evaluations tailored to Triton. In this work, we introduce TritonBench, the first comprehensive benchmark for Triton operator generation. TritonBench features two evaluation channels: a curated set of 184 real-world operators from GitHub and a collection of operators aligned with PyTorch interfaces. Unlike conventional code benchmarks prioritizing functional correctness, TritonBench also profiles efficiency performance on widely deployed GPUs aligned with industry applications. Our study reveals that current state-of-the-art code LLMs struggle to generate efficient Triton operators, highlighting a significant gap in high-performance code generation. TritonBench will be available at https://github.com/thunlp/TritonBench.
Abstract:Accurate blur estimation is essential for high-performance imaging across various applications. Blur is typically represented by the point spread function (PSF). In this paper, we propose a physics-informed PSF learning framework for imaging systems, consisting of a simple calibration followed by a learning process. Our framework could achieve both high accuracy and universal applicability. Inspired by the Seidel PSF model for representing spatially varying PSF, we identify its limitations in optimization and introduce a novel wavefront-based PSF model accompanied by an optimization strategy, both reducing optimization complexity and improving estimation accuracy. Moreover, our wavefront-based PSF model is independent of lens parameters, eliminate the need for prior knowledge of the lens. To validate our approach, we compare it with recent PSF estimation methods (Degradation Transfer and Fast Two-step) through a deblurring task, where all the estimated PSFs are used to train state-of-the-art deblurring algorithms. Our approach demonstrates improvements in image quality in simulation and also showcases noticeable visual quality improvements on real captured images.
Abstract:While advances in fairness and alignment have helped mitigate overt biases exhibited by large language models (LLMs) when explicitly prompted, we hypothesize that these models may still exhibit implicit biases when simulating human behavior. To test this hypothesis, we propose a technique to systematically uncover such biases across a broad range of sociodemographic categories by assessing decision-making disparities among agents with LLM-generated, sociodemographically-informed personas. Using our technique, we tested six LLMs across three sociodemographic groups and four decision-making scenarios. Our results show that state-of-the-art LLMs exhibit significant sociodemographic disparities in nearly all simulations, with more advanced models exhibiting greater implicit biases despite reducing explicit biases. Furthermore, when comparing our findings to real-world disparities reported in empirical studies, we find that the biases we uncovered are directionally aligned but markedly amplified. This directional alignment highlights the utility of our technique in uncovering systematic biases in LLMs rather than random variations; moreover, the presence and amplification of implicit biases emphasizes the need for novel strategies to address these biases.
Abstract:Radio map, or pathloss map prediction, is a crucial method for wireless network modeling and management. By leveraging deep learning to construct pathloss patterns from geographical maps, an accurate digital replica of the transmission environment could be established with less computational overhead and lower prediction error compared to traditional model-driven techniques. While existing state-of-the-art (SOTA) methods predominantly rely on convolutional architectures, this paper introduces a hybrid transformer-convolution model, termed RMTransformer, to enhance the accuracy of radio map prediction. The proposed model features a multi-scale transformer-based encoder for efficient feature extraction and a convolution-based decoder for precise pixel-level image reconstruction. Simulation results demonstrate that the proposed scheme significantly improves prediction accuracy, and over a 30% reduction in root mean square error (RMSE) is achieved compared to typical SOTA approaches.
Abstract:This paper explores the multi-dimensional challenges faced during the development of Large Language Models (LLMs), including the massive scale of model parameters and file sizes, the complexity of development environment configuration, the singularity of model functionality, and the high costs of computational resources. To address these challenges, this paper proposes three core technical solutions: LLM sharing protocol, LLM universal environment framework, and Agent optimal path module. To solve the computational resource constraints in the early stages of research, we further innovatively propose a joint mining mechanism, achieving bilateral value sharing between computing power providers and model designers, including breakthrough rewards for optimal model paths and long-term profit distribution, thereby providing researchers with cost-optimized computational resource support and promoting the continuous development of LLM research and applications.
Abstract:Radio map, or pathloss map prediction, is a crucial method for wireless network modeling and management. By leveraging deep learning to construct pathloss patterns from geographical maps, an accurate digital replica of the transmission environment could be established with less computational overhead and lower prediction error compared to traditional model-driven techniques. While existing state-of-the-art (SOTA) methods predominantly rely on convolutional architectures, this paper introduces a hybrid transformer-convolution model, termed RadioTransformer, to enhance the accuracy of radio map prediction. The proposed model features a multi-scale transformer-based encoder for efficient feature extraction and a convolution-based decoder for precise pixel-level image reconstruction. Simulation results demonstrate that the proposed scheme significantly improves prediction accuracy, and over a 30% reduction in root mean square error (RMSE) is achieved compared to typical SOTA approaches.
Abstract:Rotated object detection has made significant progress in the optical remote sensing. However, advancements in the Synthetic Aperture Radar (SAR) field are laggard behind, primarily due to the absence of a large-scale dataset. Annotating such a dataset is inefficient and costly. A promising solution is to employ a weakly supervised model (e.g., trained with available horizontal boxes only) to generate pseudo-rotated boxes for reference before manual calibration. Unfortunately, the existing weakly supervised models exhibit limited accuracy in predicting the object's angle. Previous works attempt to enhance angle prediction by using angle resolvers that decouple angles into cosine and sine encodings. In this work, we first reevaluate these resolvers from a unified perspective of dimension mapping and expose that they share the same shortcomings: these methods overlook the unit cycle constraint inherent in these encodings, easily leading to prediction biases. To address this issue, we propose the Unit Cycle Resolver, which incorporates a unit circle constraint loss to improve angle prediction accuracy. Our approach can effectively improve the performance of existing state-of-the-art weakly supervised methods and even surpasses fully supervised models on existing optical benchmarks (i.e., DOTA-v1.0 dataset). With the aid of UCR, we further annotate and introduce RSAR, the largest multi-class rotated SAR object detection dataset to date. Extensive experiments on both RSAR and optical datasets demonstrate that our UCR enhances angle prediction accuracy. Our dataset and code can be found at: https://github.com/zhasion/RSAR.