Abstract:Recent advancements in reinforcement learning (RL) demonstrate the significant potential in autonomous driving. Despite this promise, challenges such as the manual design of reward functions and low sample efficiency in complex environments continue to impede the development of safe and effective driving policies. To tackle these issues, we introduce LearningFlow, an innovative automated policy learning workflow tailored to urban driving. This framework leverages the collaboration of multiple large language model (LLM) agents throughout the RL training process. LearningFlow includes a curriculum sequence generation process and a reward generation process, which work in tandem to guide the RL policy by generating tailored training curricula and reward functions. Particularly, each process is supported by an analysis agent that evaluates training progress and provides critical insights to the generation agent. Through the collaborative efforts of these LLM agents, LearningFlow automates policy learning across a series of complex driving tasks, and it significantly reduces the reliance on manual reward function design while enhancing sample efficiency. Comprehensive experiments are conducted in the high-fidelity CARLA simulator, along with comparisons with other existing methods, to demonstrate the efficacy of our proposed approach. The results demonstrate that LearningFlow excels in generating rewards and curricula. It also achieves superior performance and robust generalization across various driving tasks, as well as commendable adaptation to different RL algorithms.
Abstract:Large Language Models (LLMs) have emerged as a milestone in artificial intelligence, and their performance can improve as the model size increases. However, this scaling brings great challenges to training and inference efficiency, particularly for deploying LLMs in resource-constrained environments, and the scaling trend is becoming increasingly unsustainable. This paper introduces the concept of ``\textit{capacity density}'' as a new metric to evaluate the quality of the LLMs across different scales and describes the trend of LLMs in terms of both effectiveness and efficiency. To calculate the capacity density of a given target LLM, we first introduce a set of reference models and develop a scaling law to predict the downstream performance of these reference models based on their parameter sizes. We then define the \textit{effective parameter size} of the target LLM as the parameter size required by a reference model to achieve equivalent performance, and formalize the capacity density as the ratio of the effective parameter size to the actual parameter size of the target LLM. Capacity density provides a unified framework for assessing both model effectiveness and efficiency. Our further analysis of recent open-source base LLMs reveals an empirical law (the densing law)that the capacity density of LLMs grows exponentially over time. More specifically, using some widely used benchmarks for evaluation, the capacity density of LLMs doubles approximately every three months. The law provides new perspectives to guide future LLM development, emphasizing the importance of improving capacity density to achieve optimal results with minimal computational overhead.
Abstract:Humans can utilize techniques to quickly acquire knowledge from specific materials in advance, such as creating self-assessment questions, enabling us to achieving related tasks more efficiently. In contrast, large language models (LLMs) usually relies on retrieval-augmented generation to exploit knowledge materials in an instant manner, or requires external signals such as human preference data and stronger LLM annotations to conduct knowledge adaptation. To unleash the self-learning potential of LLMs, we propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases. Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently. Experimental results on multiple datasets demonstrate the effectiveness of our approach, significantly boosting model performance in downstream tasks that require specific knowledge at a low cost. Notably, our approach achieves over 90% of the performance improvement that can be obtained by using GPT-4-turbo annotation, while relying entirely on self-supervision. We release our experimental data, models, and process analyses to the community for further exploration (https://github.com/thunlp/KBAlign).
Abstract:Generating 3D meshes from a single image is an important but ill-posed task. Existing methods mainly adopt 2D multiview diffusion models to generate intermediate multiview images, and use the Large Reconstruction Model (LRM) to create the final meshes. However, the multiview images exhibit local inconsistencies, and the meshes often lack fidelity to the input image or look blurry. We propose Fancy123, featuring two enhancement modules and an unprojection operation to address the above three issues, respectively. The appearance enhancement module deforms the 2D multiview images to realign misaligned pixels for better multiview consistency. The fidelity enhancement module deforms the 3D mesh to match the input image. The unprojection of the input image and deformed multiview images onto LRM's generated mesh ensures high clarity, discarding LRM's predicted blurry-looking mesh colors. Extensive qualitative and quantitative experiments verify Fancy123's SoTA performance with significant improvement. Also, the two enhancement modules are plug-and-play and work at inference time, allowing seamless integration into various existing single-image-to-3D methods.
Abstract:Flexible electrical impedance tomography (EIT) is an emerging technology for tactile sensing in human-machine interfaces (HMI). It offers a unique alternative to traditional array-based tactile sensors with its flexible, scalable, and cost-effective one-piece design. This paper proposes a lattice-patterned flexible EIT tactile sensor with a hydrogel-based conductive layer, designed for enhanced sensitivity while maintaining durability. We conducted simulation studies to explore the influence of lattice width and conductive layer thickness on sensor performance, establishing optimized sensor design parameters for enhanced functionality. Experimental evaluations demonstrate the sensor's capacity to detect diverse tactile patterns with a high accuracy. The practical utility of the sensor is demonstrated through its integration within an HMI setup to control a virtual game, showcasing its potential for dynamic, multi-functional tactile interactions in real-time applications. This study reinforces the potential of EIT-based flexible tactile sensors, establishing a foundation for future advancements in wearable, adaptable HMI technologies.
Abstract:Traffic signs play a key role in assisting autonomous driving systems (ADS) by enabling the assessment of vehicle behavior in compliance with traffic regulations and providing navigation instructions. However, current works are limited to basic sign understanding without considering the egocentric vehicle's spatial position, which fails to support further regulation assessment and direction navigation. Following the above issues, we introduce a new task: traffic sign interpretation from the vehicle's first-person view, referred to as TSI-FPV. Meanwhile, we develop a traffic guidance assistant (TGA) scenario application to re-explore the role of traffic signs in ADS as a complement to popular autonomous technologies (such as obstacle perception). Notably, TGA is not a replacement for electronic map navigation; rather, TGA can be an automatic tool for updating it and complementing it in situations such as offline conditions or temporary sign adjustments. Lastly, a spatial and semantic logic-aware stepwise reasoning pipeline (SignEye) is constructed to achieve the TSI-FPV and TGA, and an application-specific dataset (Traffic-CN) is built. Experiments show that TSI-FPV and TGA are achievable via our SignEye trained on Traffic-CN. The results also demonstrate that the TGA can provide complementary information to ADS beyond existing popular autonomous technologies.
Abstract:Texts on the intelligent transportation scene include mass information. Fully harnessing this information is one of the critical drivers for advancing intelligent transportation. Unlike the general scene, detecting text in transportation has extra demand, such as a fast inference speed, except for high accuracy. Most existing real-time text detection methods are based on the shrink mask, which loses some geometry semantic information and needs complex post-processing. In addition, the previous method usually focuses on correct output, which ignores feature correction and lacks guidance during the intermediate process. To this end, we propose an efficient multi-scene text detector that contains an effective text representation similar mask (SM) and a feature correction module (FCM). Unlike previous methods, the former aims to preserve the geometric information of the instances as much as possible. Its post-progressing saves 50$\%$ of the time, accurately and efficiently reconstructing text contours. The latter encourages false positive features to move away from the positive feature center, optimizing the predictions from the feature level. Some ablation studies demonstrate the efficiency of the SM and the effectiveness of the FCM. Moreover, the deficiency of existing traffic datasets (such as the low-quality annotation or closed source data unavailability) motivated us to collect and annotate a traffic text dataset, which introduces motion blur. In addition, to validate the scene robustness of the SM-Net, we conduct experiments on traffic, industrial, and natural scene datasets. Extensive experiments verify it achieves (SOTA) performance on several benchmarks. The code and dataset are available at: \url{https://github.com/fengmulin/SMNet}.
Abstract:Activation sparsity denotes the existence of substantial weakly-contributed elements within activation outputs that can be eliminated, benefiting many important applications concerned with large language models (LLMs). Although promoting greater activation sparsity within LLMs deserves deep studies, existing works lack comprehensive and quantitative research on the correlation between activation sparsity and potentially influential factors. In this paper, we present a comprehensive study on the quantitative scaling properties and influential factors of the activation sparsity within decoder-only Transformer-based LLMs. Specifically, we propose PPL-$p\%$ sparsity, a precise and performance-aware activation sparsity metric that is applicable to any activation function. Through extensive experiments, we find several important phenomena. Firstly, different activation functions exhibit comparable performance but opposite training-time sparsity trends. The activation ratio (i.e., $1-\mathrm{sparsity\ ratio}$) evolves as a convergent increasing power-law and decreasing logspace power-law with the amount of training data for SiLU-activated and ReLU-activated LLMs, respectively. These demonstrate that ReLU is more efficient as the activation function than SiLU and can leverage more training data to improve activation sparsity. Secondly, the activation ratio linearly increases with the width-depth ratio below a certain bottleneck point, indicating the potential advantage of a deeper architecture at a fixed parameter scale. Finally, at similar width-depth ratios, we surprisingly find that the limit value of activation sparsity varies weakly with the parameter scale, i.e., the activation patterns within LLMs are insensitive to the parameter scale. These empirical laws towards LLMs with greater activation sparsity have important implications for making LLMs more efficient and interpretable.
Abstract:Despite the impressive text-to-image (T2I) synthesis capabilities of diffusion models, they often struggle to understand compositional relationships between objects and attributes, especially in complex settings. Existing solutions have tackled these challenges by optimizing the cross-attention mechanism or learning from the caption pairs with minimal semantic changes. However, can we generate high-quality complex contrastive images that diffusion models can directly discriminate based on visual representations? In this work, we leverage large-language models (LLMs) to compose realistic, complex scenarios and harness Visual-Question Answering (VQA) systems alongside diffusion models to automatically curate a contrastive dataset, ConPair, consisting of 15k pairs of high-quality contrastive images. These pairs feature minimal visual discrepancies and cover a wide range of attribute categories, especially complex and natural scenarios. To learn effectively from these error cases, i.e., hard negative images, we propose EvoGen, a new multi-stage curriculum for contrastive learning of diffusion models. Through extensive experiments across a wide range of compositional scenarios, we showcase the effectiveness of our proposed framework on compositional T2I benchmarks.
Abstract:Coarse-grained(CG) molecular dynamics simulations offer computational efficiency for exploring protein conformational ensembles and thermodynamic properties. Though coarse representations enable large-scale simulations across extended temporal and spatial ranges, the sacrifice of atomic-level details limits their utility in tasks such as ligand docking and protein-protein interaction prediction. Backmapping, the process of reconstructing all-atom structures from coarse-grained representations, is crucial for recovering these fine details. While recent machine learning methods have made strides in protein structure generation, challenges persist in reconstructing diverse atomistic conformations that maintain geometric accuracy and chemical validity. In this paper, we present Latent Diffusion Backmapping (LDB), a novel approach leveraging denoising diffusion within latent space to address these challenges. By combining discrete latent encoding with diffusion, LDB bypasses the need for equivariant and internal coordinate manipulation, significantly simplifying the training and sampling processes as well as facilitating better and wider exploration in configuration space. We evaluate LDB's state-of-the-art performance on three distinct protein datasets, demonstrating its ability to efficiently reconstruct structures with high structural accuracy and chemical validity. Moreover, LDB shows exceptional versatility in capturing diverse protein ensembles, highlighting its capability to explore intricate conformational spaces. Our results position LDB as a powerful and scalable approach for backmapping, effectively bridging the gap between CG simulations and atomic-level analyses in computational biology.