Abstract:Adversarial examples, which are inputs deliberately perturbed with imperceptible changes to induce model errors, have raised serious concerns for the reliability and security of deep neural networks (DNNs). While adversarial attacks have been extensively studied in continuous data domains such as images, the discrete nature of text presents unique challenges. In this paper, we propose Irony-based Adversarial Examples (IAE), a method that transforms straightforward sentences into ironic ones to create adversarial text. This approach exploits the rhetorical device of irony, where the intended meaning is opposite to the literal interpretation, requiring a deeper understanding of context to detect. The IAE method is particularly challenging due to the need to accurately locate evaluation words, substitute them with appropriate collocations, and expand the text with suitable ironic elements while maintaining semantic coherence. Our research makes the following key contributions: (1) We introduce IAE, a strategy for generating textual adversarial examples using irony. This method does not rely on pre-existing irony corpora, making it a versatile tool for creating adversarial text in various NLP tasks. (2) We demonstrate that the performance of several state-of-the-art deep learning models on sentiment analysis tasks significantly deteriorates when subjected to IAE attacks. This finding underscores the susceptibility of current NLP systems to adversarial manipulation through irony. (3) We compare the impact of IAE on human judgment versus NLP systems, revealing that humans are less susceptible to the effects of irony in text.
Abstract:Association as a gift enables people do not have to mention something in completely straightforward words and allows others to understand what they intend to refer to. In this paper, we propose a chain association-based adversarial attack against natural language processing systems, utilizing the comprehension gap between humans and machines. We first generate a chain association graph for Chinese characters based on the association paradigm for building search space of potential adversarial examples. Then, we introduce an discrete particle swarm optimization algorithm to search for the optimal adversarial examples. We conduct comprehensive experiments and show that advanced natural language processing models and applications, including large language models, are vulnerable to our attack, while humans appear good at understanding the perturbed text. We also explore two methods, including adversarial training and associative graph-based recovery, to shield systems from chain association-based attack. Since a few examples that use some derogatory terms, this paper contains materials that may be offensive or upsetting to some people.
Abstract:In this paper, we present the ``joint pre-training and local re-training'' framework for learning and applying multi-source knowledge graph (KG) embeddings. We are motivated by the fact that different KGs contain complementary information to improve KG embeddings and downstream tasks. We pre-train a large teacher KG embedding model over linked multi-source KGs and distill knowledge to train a student model for a task-specific KG. To enable knowledge transfer across different KGs, we use entity alignment to build a linked subgraph for connecting the pre-trained KGs and the target KG. The linked subgraph is re-trained for three-level knowledge distillation from the teacher to the student, i.e., feature knowledge distillation, network knowledge distillation, and prediction knowledge distillation, to generate more expressive embeddings. The teacher model can be reused for different target KGs and tasks without having to train from scratch. We conduct extensive experiments to demonstrate the effectiveness and efficiency of our framework.
Abstract:Joint representation learning over multi-sourced knowledge graphs (KGs) yields transferable and expressive embeddings that improve downstream tasks. Entity alignment (EA) is a critical step in this process. Despite recent considerable research progress in embedding-based EA, how it works remains to be explored. In this paper, we provide a similarity flooding perspective to explain existing translation-based and aggregation-based EA models. We prove that the embedding learning process of these models actually seeks a fixpoint of pairwise similarities between entities. We also provide experimental evidence to support our theoretical analysis. We propose two simple but effective methods inspired by the fixpoint computation in similarity flooding, and demonstrate their effectiveness on benchmark datasets. Our work bridges the gap between recent embedding-based models and the conventional similarity flooding algorithm. It would improve our understanding of and increase our faith in embedding-based EA.
Abstract:Knowledge graphs (KGs) store rich facts about the real world. In this paper, we study KG alignment, which aims to find alignment between not only entities but also relations and classes in different KGs. Alignment at the entity level can cross-fertilize alignment at the schema level. We propose a new KG alignment approach, called DAAKG, based on deep learning and active learning. With deep learning, it learns the embeddings of entities, relations and classes, and jointly aligns them in a semi-supervised manner. With active learning, it estimates how likely an entity, relation or class pair can be inferred, and selects the best batch for human labeling. We design two approximation algorithms for efficient solution to batch selection. Our experiments on benchmark datasets show the superior accuracy and generalization of DAAKG and validate the effectiveness of all its modules.
Abstract:Knowledge graphs (KGs) have become a valuable asset for many AI applications. Although some KGs contain plenty of facts, they are widely acknowledged as incomplete. To address this issue, many KG completion methods are proposed. Among them, open KG completion methods leverage the Web to find missing facts. However, noisy data collected from diverse sources may damage the completion accuracy. In this paper, we propose a new trustworthy method that exploits facts for a KG based on multi-sourced noisy data and existing facts in the KG. Specifically, we introduce a graph neural network with a holistic scoring function to judge the plausibility of facts with various value types. We design value alignment networks to resolve the heterogeneity between values and map them to entities even outside the KG. Furthermore, we present a truth inference model that incorporates data source qualities into the fact scoring function, and design a semi-supervised learning way to infer the truths from heterogeneous values. We conduct extensive experiments to compare our method with the state-of-the-arts. The results show that our method achieves superior accuracy not only in completing missing facts but also in discovering new facts.
Abstract:Data augmentation is an effective way to improve the performance of many neural text generation models. However, current data augmentation methods need to define or choose proper data mapping functions that map the original samples into the augmented samples. In this work, we derive an objective to formulate the problem of data augmentation on text generation tasks without any use of augmented data constructed by specific mapping functions. Our proposed objective can be efficiently optimized and applied to popular loss functions on text generation tasks with a convergence rate guarantee. Experiments on five datasets of two text generation tasks show that our approach can approximate or even surpass popular data augmentation methods.
Abstract:To alleviate the cold start problem caused by collaborative filtering in recommender systems, knowledge graphs (KGs) are increasingly employed by many methods as auxiliary resources. However, existing work incorporated with KGs cannot capture the explicit long-range semantics between users and items meanwhile consider various connectivity between items. In this paper, we propose RGRec, which combines rule learning and graph neural networks (GNNs) for recommendation. RGRec first maps items to corresponding entities in KGs and adds users as new entities. Then, it automatically learns rules to model the explicit long-range semantics, and captures the connectivity between entities by aggregation to better encode various information. We show the effectiveness of RGRec on three real-world datasets. Particularly, the combination of rule learning and GNNs achieves substantial improvement compared to methods only using either of them.
Abstract:Learning knowledge graph (KG) embeddings has received increasing attention in recent years. Most embedding models in literature interpret relations as linear or bilinear mapping functions to operate on entity embeddings. However, we find that such relation-level modeling cannot capture the diverse relational structures of KGs well. In this paper, we propose a novel edge-centric embedding model TransEdge, which contextualizes relation representations in terms of specific head-tail entity pairs. We refer to such contextualized representations of a relation as edge embeddings and interpret them as translations between entity embeddings. TransEdge achieves promising performance on different prediction tasks. Our experiments on benchmark datasets indicate that it obtains the state-of-the-art results on embedding-based entity alignment. We also show that TransEdge is complementary with conventional entity alignment methods. Moreover, it shows very competitive performance on link prediction.
Abstract:Knowledge bases (KBs) store rich yet heterogeneous entities and facts. Entity resolution (ER) aims to identify entities in KBs which refer to the same real-world object. Recent studies have shown significant benefits of involving humans in the loop of ER. They often resolve entities with pairwise similarity measures over attribute values and resort to the crowds to label uncertain ones. However, existing methods still suffer from high labor costs and insufficient labeling to some extent. In this paper, we propose a novel approach called crowdsourced collective ER, which leverages the relationships between entities to infer matches jointly rather than independently. Specifically, it iteratively asks human workers to label picked entity pairs and propagates the labeling information to their neighbors in distance. During this process, we address the problems of candidate entity pruning, probabilistic propagation, optimal question selection and error-tolerant truth inference. Our experiments on real-world datasets demonstrate that, compared with state-of-the-art methods, our approach achieves superior accuracy with much less labeling.