State Key Laboratory for Novel Software Technology, Nanjing University
Abstract:With the maturity of depth sensors in various 3D safety-critical applications, 3D point cloud models have been shown to be vulnerable to adversarial attacks. Almost all existing 3D attackers simply follow the white-box or black-box setting to iteratively update coordinate perturbations based on back-propagated or estimated gradients. However, these methods are hard to deploy in real-world scenarios (no model details are provided) as they severely rely on parameters or output logits of victim models. To this end, we propose point cloud attacks from a more practical setting, i.e., hard-label black-box attack, in which attackers can only access the prediction label of 3D input. We introduce a novel 3D attack method based on a new spectrum-aware decision boundary algorithm to generate high-quality adversarial samples. In particular, we first construct a class-aware model decision boundary, by developing a learnable spectrum-fusion strategy to adaptively fuse point clouds of different classes in the spectral domain, aiming to craft their intermediate samples without distorting the original geometry. Then, we devise an iterative coordinate-spectrum optimization method with curvature-aware boundary search to move the intermediate sample along the decision boundary for generating adversarial point clouds with trivial perturbations. Experiments demonstrate that our attack competitively outperforms existing white/black-box attackers in terms of attack performance and adversary quality.
Abstract:Recent analysis on the training dynamics of Transformers has unveiled an interesting characteristic: the training loss plateaus for a significant number of training steps, and then suddenly (and sharply) drops to near--optimal values. To understand this phenomenon in depth, we formulate the low-rank matrix completion problem as a masked language modeling (MLM) task, and show that it is possible to train a BERT model to solve this task to low error. Furthermore, the loss curve shows a plateau early in training followed by a sudden drop to near-optimal values, despite no changes in the training procedure or hyper-parameters. To gain interpretability insights into this sudden drop, we examine the model's predictions, attention heads, and hidden states before and after this transition. Concretely, we observe that (a) the model transitions from simply copying the masked input to accurately predicting the masked entries; (b) the attention heads transition to interpretable patterns relevant to the task; and (c) the embeddings and hidden states encode information relevant to the problem. We also analyze the training dynamics of individual model components to understand the sudden drop in loss.
Abstract:This paper tackles the challenging task of 3D visual grounding-locating a specific object in a 3D point cloud scene based on text descriptions. Existing methods fall into two categories: top-down and bottom-up methods. Top-down methods rely on a pre-trained 3D detector to generate and select the best bounding box, resulting in time-consuming processes. Bottom-up methods directly regress object bounding boxes with coarse-grained features, producing worse results. To combine their strengths while addressing their limitations, we propose a joint top-down and bottom-up framework, aiming to enhance the performance while improving the efficiency. Specifically, in the first stage, we propose a bottom-up based proposal generation module, which utilizes lightweight neural layers to efficiently regress and cluster several coarse object proposals instead of using a complex 3D detector. Then, in the second stage, we introduce a top-down based proposal consolidation module, which utilizes graph design to effectively aggregate and propagate the query-related object contexts among the generated proposals for further refinement. By jointly training these two modules, we can avoid the inherent drawbacks of the complex proposals in the top-down framework and the coarse proposals in the bottom-up framework. Experimental results on the ScanRefer benchmark show that our framework is able to achieve the state-of-the-art performance.
Abstract:Extensive knowledge graphs (KGs) have been constructed to facilitate knowledge-driven tasks across various scenarios. However, existing work usually develops separate reasoning models for different KGs, lacking the ability to generalize and transfer knowledge across diverse KGs and reasoning settings. In this paper, we propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability. Specifically, we introduce a prompt graph centered with a query-related example fact as context to understand the query relation. To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer that maps entities and relations in prompt graphs to predefined tokens. Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively. We conduct evaluation on 43 different KGs in both transductive and inductive settings. Results indicate that the proposed KG-ICL outperforms baselines on most datasets, showcasing its outstanding generalization and universal reasoning capabilities. The source code is accessible on GitHub: https://github.com/nju-websoft/KG-ICL.
Abstract:Prior work has shown that text-conditioned diffusion models can learn to identify and manipulate primitive concepts underlying a compositional data-generating process, enabling generalization to entirely novel, out-of-distribution compositions. Beyond performance evaluations, these studies develop a rich empirical phenomenology of learning dynamics, showing that models generalize sequentially, respecting the compositional hierarchy of the data-generating process. Moreover, concept-centric structures within the data significantly influence a model's speed of learning the ability to manipulate a concept. In this paper, we aim to better characterize these empirical results from a theoretical standpoint. Specifically, we propose an abstraction of prior work's compositional generalization problem by introducing a structured identity mapping (SIM) task, where a model is trained to learn the identity mapping on a Gaussian mixture with structurally organized centroids. We mathematically analyze the learning dynamics of neural networks trained on this SIM task and show that, despite its simplicity, SIM's learning dynamics capture and help explain key empirical observations on compositional generalization with diffusion models identified in prior work. Our theory also offers several new insights -- e.g., we find a novel mechanism for non-monotonic learning dynamics of test loss in early phases of training. We validate our new predictions by training a text-conditioned diffusion model, bridging our simplified framework and complex generative models. Overall, this work establishes the SIM task as a meaningful theoretical abstraction of concept learning dynamics in modern generative models.
Abstract:The phenomenon of benign overfitting, where a trained neural network perfectly fits noisy training data but still achieves near-optimal test performance, has been extensively studied in recent years for linear models and fully-connected/convolutional networks. In this work, we study benign overfitting in a single-head softmax attention model, which is the fundamental building block of Transformers. We prove that under appropriate conditions, the model exhibits benign overfitting in a classification setting already after two steps of gradient descent. Moreover, we show conditions where a minimum-norm/maximum-margin interpolator exhibits benign overfitting. We study how the overfitting behavior depends on the signal-to-noise ratio (SNR) of the data distribution, namely, the ratio between norms of signal and noise tokens, and prove that a sufficiently large SNR is both necessary and sufficient for benign overfitting.
Abstract:Knowledge Distillation (KD) has emerged as a promising approach for transferring knowledge from a larger, more complex teacher model to a smaller student model. Traditionally, KD involves training the student to mimic the teacher's output probabilities, while more advanced techniques have explored guiding the student to adopt the teacher's internal representations. Despite its widespread success, the performance of KD in binary classification and few-class problems has been less satisfactory. This is because the information about the teacher model's generalization patterns scales directly with the number of classes. Moreover, several sophisticated distillation methods may not be universally applicable or effective for data types beyond Computer Vision. Consequently, effective distillation techniques remain elusive for a range of key real-world applications, such as sentiment analysis, search query understanding, and advertisement-query relevance assessment. Taking these observations into account, we introduce a novel method for distilling knowledge from the teacher's model representations, which we term Learning Embedding Linear Projections (LELP). Inspired by recent findings about the structure of final-layer representations, LELP works by identifying informative linear subspaces in the teacher's embedding space, and splitting them into pseudo-subclasses. The student model is then trained to replicate these pseudo-classes. Our experimental evaluation on large-scale NLP benchmarks like Amazon Reviews and Sentiment140 demonstrate the LELP is consistently competitive with, and typically superior to, existing state-of-the-art distillation algorithms for binary and few-class problems, where most KD methods suffer.
Abstract:Large language models (LLMs) have achieved impressive performance on code generation. Although prior studies enhanced LLMs with prompting techniques and code refinement, they still struggle with complex programming problems due to rigid solution plans. In this paper, we draw on pair programming practices to propose PairCoder, a novel LLM-based framework for code generation. PairCoder incorporates two collaborative LLM agents, namely a Navigator agent for high-level planning and a Driver agent for specific implementation. The Navigator is responsible for proposing promising solution plans, selecting the current optimal plan, and directing the next iteration round based on execution feedback. The Driver follows the guidance of Navigator to undertake initial code generation, code testing, and refinement. This interleaved and iterative workflow involves multi-plan exploration and feedback-based refinement, which mimics the collaboration of pair programmers. We evaluate PairCoder with both open-source and closed-source LLMs on various code generation benchmarks. Extensive experimental results demonstrate the superior accuracy of PairCoder, achieving relative pass@1 improvements of 12.00%-162.43% compared to prompting LLMs directly.
Abstract:Sparse-view 3D reconstruction stands as a formidable challenge in computer vision, aiming to build complete three-dimensional models from a limited array of viewing perspectives. This task confronts several difficulties: 1) the limited number of input images that lack consistent information; 2) dependence on the quality of input images; and 3) the substantial size of model parameters. To address these challenges, we propose a self-augmented coarse-to-fine Gaussian splatting paradigm, enhanced with a structure-aware mask, for sparse-view 3D reconstruction. In particular, our method initially employs a coarse Gaussian model to obtain a basic 3D representation from sparse-view inputs. Subsequently, we develop a fine Gaussian network to enhance consistent and detailed representation of the output with both 3D geometry augmentation and perceptual view augmentation. During training, we design a structure-aware masking strategy to further improve the model's robustness against sparse inputs and noise.Experimental results on the MipNeRF360 and OmniObject3D datasets demonstrate that the proposed method achieves state-of-the-art performances for sparse input views in both perceptual quality and efficiency.
Abstract:Traditional knowledge graph (KG) completion models learn embeddings to predict missing facts. Recent works attempt to complete KGs in a text-generation manner with large language models (LLMs). However, they need to ground the output of LLMs to KG entities, which inevitably brings errors. In this paper, we present a finetuning framework, DIFT, aiming to unleash the KG completion ability of LLMs and avoid grounding errors. Given an incomplete fact, DIFT employs a lightweight model to obtain candidate entities and finetunes an LLM with discrimination instructions to select the correct one from the given candidates. To improve performance while reducing instruction data, DIFT uses a truncated sampling method to select useful facts for finetuning and injects KG embeddings into the LLM. Extensive experiments on benchmark datasets demonstrate the effectiveness of our proposed framework.