State Key Laboratory for Novel Software Technology, Nanjing University
Abstract:Entity alignment (EA) is critical for knowledge graph (KG) fusion. Existing EA models lack transferability and are incapable of aligning unseen KGs without retraining. While using graph foundation models (GFMs) offer a solution, we find that directly adapting GFMs to EA remains largely ineffective. This stems from a critical "reasoning horizon gap": unlike link prediction in GFMs, EA necessitates capturing long-range dependencies across sparse and heterogeneous KG structuresTo address this challenge, we propose a EA foundation model driven by a parallel encoding strategy. We utilize seed EA pairs as local anchors to guide the information flow, initializing and encoding two parallel streams simultaneously. This facilitates anchor-conditioned message passing and significantly shortens the inference trajectory by leveraging local structural proximity instead of global search. Additionally, we incorporate a merged relation graph to model global dependencies and a learnable interaction module for precise matching. Extensive experiments verify the effectiveness of our framework, highlighting its strong generalizability to unseen KGs.
Abstract:Despite recent advances in multimodal large language models (MLLMs), their ability to understand and interact with music remains limited. Music understanding requires grounded reasoning over symbolic scores and expressive performance audio, which general-purpose MLLMs often fail to handle due to insufficient perceptual grounding. We introduce MuseAgent, a music-centric multimodal agent that augments language models with structured symbolic representations derived from sheet music images and performance audio. By integrating optical music recognition and automatic music transcription modules, MuseAgent enables multi-step reasoning and interaction over fine-grained musical content. To systematically evaluate music understanding capabilities, we further propose MuseBench, a benchmark covering music theory reasoning, score interpretation, and performance-level analysis across text, image, and audio modalities. Experiments show that existing MLLMs perform poorly on these tasks, while MuseAgent achieves substantial improvements, highlighting the importance of structured multimodal grounding for interactive music understanding.
Abstract:Large reasoning models such as DeepSeek-R1 and their distilled variants achieve strong performance on complex reasoning tasks. Yet, distilling these models often demands large-scale data for supervised fine-tuning (SFT), motivating the pursuit of data-efficient training methods. To address this, we propose a skill-centric distillation framework that efficiently transfers reasoning ability to weaker models with two components: (1) Skill-based data selection, which prioritizes examples targeting the student model's weaker skills, and (2) Skill-aware fine-tuning, which encourages explicit skill decomposition during problem solving. With only 1,000 training examples selected from a 100K teacher-generated corpus, our method surpasses random SFT baselines by +1.6% on Qwen3-4B and +1.4% on Qwen3-8B across five mathematical reasoning benchmarks. Further analysis confirms that these gains concentrate on skills emphasized during training, highlighting the effectiveness of skill-centric training for efficient reasoning distillation.
Abstract:Memory management is vital for LLM agents to handle long-term interaction and personalization. Most research focuses on how to organize and use memory summary, but often overlooks the initial memory extraction stage. In this paper, we argue that existing summary-based methods have two major limitations based on the recurrent processing theory. First, summarization is "ahead-of-time", acting as a blind "feed-forward" process that misses important details because it doesn't know future tasks. Second, extraction is usually "one-off", lacking a feedback loop to verify facts, which leads to the accumulation of information loss. To address these issues, we propose proactive memory extraction (namely ProMem). Unlike static summarization, ProMem treats extraction as an iterative cognitive process. We introduce a recurrent feedback loop where the agent uses self-questioning to actively probe the dialogue history. This mechanism allows the agent to recover missing information and correct errors. Our ProMem significantly improves the completeness of the extracted memory and QA accuracy. It also achieves a superior trade-off between extraction quality and token cost.
Abstract:Code translation across multiple programming languages is essential yet challenging due to two vital obstacles: scarcity of parallel data paired with executable test oracles, and optimization imbalance when handling diverse language pairs. We propose BootTrans, a bootstrapping method that resolves both obstacles. Its key idea is to leverage the functional invariance and cross-lingual portability of test suites, adapting abundant pivot-language unit tests to serve as universal verification oracles for multilingual RL training. Our method introduces a dual-pool architecture with seed and exploration pools to progressively expand training data via execution-guided experience collection. Furthermore, we design a language-aware weighting mechanism that dynamically prioritizes harder translation directions based on relative performance across sibling languages, mitigating optimization imbalance. Extensive experiments on the HumanEval-X and TransCoder-Test benchmarks demonstrate substantial improvements over baseline LLMs across all translation directions, with ablations validating the effectiveness of both bootstrapping and weighting components.




Abstract:Due to the limitations of a single autonomous vehicle, Cellular Vehicle-to-Everything (C-V2X) technology opens a new window for achieving fully autonomous driving through sensor information sharing. However, real-world datasets supporting vehicle-infrastructure cooperative navigation in complex urban environments remain rare. To address this gap, we present UrbanV2X, a comprehensive multisensory dataset collected from vehicles and roadside infrastructure in the Hong Kong C-V2X testbed, designed to support research on smart mobility applications in dense urban areas. Our onboard platform provides synchronized data from multiple industrial cameras, LiDARs, 4D radar, ultra-wideband (UWB), IMU, and high-precision GNSS-RTK/INS navigation systems. Meanwhile, our roadside infrastructure provides LiDAR, GNSS, and UWB measurements. The entire vehicle-infrastructure platform is synchronized using the Precision Time Protocol (PTP), with sensor calibration data provided. We also benchmark various navigation algorithms to evaluate the collected cooperative data. The dataset is publicly available at https://polyu-taslab.github.io/UrbanV2X/.
Abstract:Large language models (LLMs) excel at reasoning but struggle with knowledge-intensive questions due to limited context and parametric knowledge. However, existing methods that rely on finetuned LLMs or GNN retrievers are limited by dataset-specific tuning and scalability on large or unseen graphs. We propose the LLM-KGFR collaborative framework, where an LLM works with a structured retriever, the Knowledge Graph Foundation Retriever (KGFR). KGFR encodes relations using LLM-generated descriptions and initializes entities based on their roles in the question, enabling zero-shot generalization to unseen KGs. To handle large graphs efficiently, it employs Asymmetric Progressive Propagation (APP)- a stepwise expansion that selectively limits high-degree nodes while retaining informative paths. Through node-, edge-, and path-level interfaces, the LLM iteratively requests candidate answers, supporting facts, and reasoning paths, forming a controllable reasoning loop. Experiments demonstrate that LLM-KGFR achieves strong performance while maintaining scalability and generalization, providing a practical solution for KG-augmented reasoning.




Abstract:Recent years have witnessed a surge in the number of large language models (LLMs), yet efficiently managing and utilizing these vast resources remains a significant challenge. In this work, we explore how to learn compact representations of LLM abilities that can facilitate downstream tasks, such as model routing and performance prediction on new benchmarks. We frame this problem as estimating the probability that a given model will correctly answer a specific query. Inspired by the item response theory (IRT) in psychometrics, we model this probability as a function of three key factors: (i) the model's multi-skill ability vector, (2) the query's discrimination vector that separates models of differing skills, and (3) the query's difficulty scalar. To learn these parameters jointly, we introduce a Mixture-of-Experts (MoE) network that couples model- and query-level embeddings. Extensive experiments demonstrate that our approach leads to state-of-the-art performance in both model routing and benchmark accuracy prediction. Moreover, analysis validates that the learned parameters encode meaningful, interpretable information about model capabilities and query characteristics.
Abstract:In a rapidly evolving world where information updates swiftly, knowledge in large language models (LLMs) becomes outdated quickly. Retraining LLMs is not a cost-effective option, making knowledge editing (KE) without modifying parameters particularly necessary. We find that although existing retrieval-augmented generation (RAG)-based KE methods excel at editing simple knowledge, they struggle with KE in multi-hop question answering due to the issue of "edit skipping", which refers to skipping the relevant edited fact in inference. In addition to the diversity of natural language expressions of knowledge, edit skipping also arises from the mismatch between the granularity of LLMs in problem-solving and the facts in the edited memory. To address this issue, we propose a novel Iterative Retrieval-Augmented Knowledge Editing method with guided decomposition (IRAKE) through the guidance from single edited facts and entire edited cases. Experimental results demonstrate that IRAKE mitigates the failure of editing caused by edit skipping and outperforms state-of-the-art methods for KE in multi-hop question answering.




Abstract:Large reasoning models (LRMs) have shown remarkable progress on complex reasoning tasks. However, some questions posed to LRMs are inherently unanswerable, such as math problems lacking sufficient conditions. We find that LRMs continually fail to provide appropriate abstentions when confronted with these unanswerable questions. In this paper, we systematically analyze, investigate, and resolve this issue for trustworthy AI. We first conduct a detailed analysis of the distinct response behaviors of LRMs when facing unanswerable questions. Then, we show that LRMs possess sufficient cognitive capabilities to recognize the flaws in these questions. However, they fail to exhibit appropriate abstention behavior, revealing a misalignment between their internal cognition and external response. Finally, to resolve this issue, we propose a lightweight, two-stage method that combines cognitive monitoring with inference-time intervention. Experimental results demonstrate that our method significantly improves the abstention rate while maintaining the overall reasoning performance.