Abstract:The phenomenon of benign overfitting, where a trained neural network perfectly fits noisy training data but still achieves near-optimal test performance, has been extensively studied in recent years for linear models and fully-connected/convolutional networks. In this work, we study benign overfitting in a single-head softmax attention model, which is the fundamental building block of Transformers. We prove that under appropriate conditions, the model exhibits benign overfitting in a classification setting already after two steps of gradient descent. Moreover, we show conditions where a minimum-norm/maximum-margin interpolator exhibits benign overfitting. We study how the overfitting behavior depends on the signal-to-noise ratio (SNR) of the data distribution, namely, the ratio between norms of signal and noise tokens, and prove that a sufficiently large SNR is both necessary and sufficient for benign overfitting.
Abstract:In partially observable multi-agent systems, agents typically only have access to local observations. This severely hinders their ability to make precise decisions, particularly during decentralized execution. To alleviate this problem and inspired by image outpainting, we propose State Inference with Diffusion Models (SIDIFF), which uses diffusion models to reconstruct the original global state based solely on local observations. SIDIFF consists of a state generator and a state extractor, which allow agents to choose suitable actions by considering both the reconstructed global state and local observations. In addition, SIDIFF can be effortlessly incorporated into current multi-agent reinforcement learning algorithms to improve their performance. Finally, we evaluated SIDIFF on different experimental platforms, including Multi-Agent Battle City (MABC), a novel and flexible multi-agent reinforcement learning environment we developed. SIDIFF achieved desirable results and outperformed other popular algorithms.
Abstract:In this study, we present an innovative fusion of language models and query analysis techniques to unlock cognition in artificial intelligence. Our system seamlessly integrates a Chess engine with a language model, enabling it to predict moves and provide strategic explanations. Leveraging a vector database through retrievable answer generation, our OpenSI AI system elucidates its decision-making process, bridging the gap between raw computation and human-like understanding. Our choice of Chess as the demonstration environment underscores the versatility of our approach. Beyond Chess, our system holds promise for diverse applications, from medical diagnostics to financial forecasting.
Abstract:In recent years, multi-agent reinforcement learning algorithms have made significant advancements in diverse gaming environments, leading to increased interest in the broader application of such techniques. To address the prevalent challenge of partial observability, communication-based algorithms have improved cooperative performance through the sharing of numerical embedding between agents. However, the understanding of the formation of collaborative mechanisms is still very limited, making designing a human-understandable communication mechanism a valuable problem to address. In this paper, we propose a novel multi-agent reinforcement learning algorithm that embeds large language models into agents, endowing them with the ability to generate human-understandable verbal communication. The entire framework has a message module and an action module. The message module is responsible for generating and sending verbal messages to other agents, effectively enhancing information sharing among agents. To further enhance the message module, we employ a teacher model to generate message labels from the global view and update the student model through Supervised Fine-Tuning (SFT). The action module receives messages from other agents and selects actions based on current local observations and received messages. Experiments conducted on the Overcooked game demonstrate our method significantly enhances the learning efficiency and performance of existing methods, while also providing an interpretable tool for humans to understand the process of multi-agent cooperation.
Abstract:Edge intelligence enables resource-demanding Deep Neural Network (DNN) inference without transferring original data, addressing concerns about data privacy in consumer Internet of Things (IoT) devices. For privacy-sensitive applications, deploying models in hardware-isolated trusted execution environments (TEEs) becomes essential. However, the limited secure memory in TEEs poses challenges for deploying DNN inference, and alternative techniques like model partitioning and offloading introduce performance degradation and security issues. In this paper, we present a novel approach for advanced model deployment in TrustZone that ensures comprehensive privacy preservation during model inference. We design a memory-efficient management method to support memory-demanding inference in TEEs. By adjusting the memory priority, we effectively mitigate memory leakage risks and memory overlap conflicts, resulting in 32 lines of code alterations in the trusted operating system. Additionally, we leverage two tiny libraries: S-Tinylib (2,538 LoCs), a tiny deep learning library, and Tinylibm (827 LoCs), a tiny math library, to support efficient inference in TEEs. We implemented a prototype on Raspberry Pi 3B+ and evaluated it using three well-known lightweight DNN models. The experimental results demonstrate that our design significantly improves inference speed by 3.13 times and reduces power consumption by over 66.5% compared to non-memory optimization method in TEEs.
Abstract:Designing better deep networks and better reinforcement learning (RL) algorithms are both important for deep RL. This work studies the former. Specifically, the Perception and Decision-making Interleaving Transformer (PDiT) network is proposed, which cascades two Transformers in a very natural way: the perceiving one focuses on \emph{the environmental perception} by processing the observation at the patch level, whereas the deciding one pays attention to \emph{the decision-making} by conditioning on the history of the desired returns, the perceiver's outputs, and the actions. Such a network design is generally applicable to a lot of deep RL settings, e.g., both the online and offline RL algorithms under environments with either image observations, proprioception observations, or hybrid image-language observations. Extensive experiments show that PDiT can not only achieve superior performance than strong baselines in different settings but also extract explainable feature representations. Our code is available at \url{https://github.com/maohangyu/PDiT}.
Abstract:The effective analysis of high-dimensional Electronic Health Record (EHR) data, with substantial potential for healthcare research, presents notable methodological challenges. Employing predictive modeling guided by a knowledge graph (KG), which enables efficient feature selection, can enhance both statistical efficiency and interpretability. While various methods have emerged for constructing KGs, existing techniques often lack statistical certainty concerning the presence of links between entities, especially in scenarios where the utilization of patient-level EHR data is limited due to privacy concerns. In this paper, we propose the first inferential framework for deriving a sparse KG with statistical guarantee based on the dynamic log-linear topic model proposed by \cite{arora2016latent}. Within this model, the KG embeddings are estimated by performing singular value decomposition on the empirical pointwise mutual information matrix, offering a scalable solution. We then establish entrywise asymptotic normality for the KG low-rank estimator, enabling the recovery of sparse graph edges with controlled type I error. Our work uniquely addresses the under-explored domain of statistical inference about non-linear statistics under the low-rank temporal dependent models, a critical gap in existing research. We validate our approach through extensive simulation studies and then apply the method to real-world EHR data in constructing clinical KGs and generating clinical feature embeddings.
Abstract:Parameter sharing, as an important technique in multi-agent systems, can effectively solve the scalability issue in large-scale agent problems. However, the effectiveness of parameter sharing largely depends on the environment setting. When agents have different identities or tasks, naive parameter sharing makes it difficult to generate sufficiently differentiated strategies for agents. Inspired by research pertaining to the brain in biology, we propose a novel parameter sharing method. It maps each type of agent to different regions within a shared network based on their identity, resulting in distinct subnetworks. Therefore, our method can increase the diversity of strategies among different agents without introducing additional training parameters. Through experiments conducted in multiple environments, our method has shown better performance than other parameter sharing methods.
Abstract:The coordination between agents in multi-agent systems has become a popular topic in many fields. To catch the inner relationship between agents, the graph structure is combined with existing methods and improves the results. But in large-scale tasks with numerous agents, an overly complex graph would lead to a boost in computational cost and a decline in performance. Here we present DAGMIX, a novel graph-based value factorization method. Instead of a complete graph, DAGMIX generates a dynamic graph at each time step during training, on which it realizes a more interpretable and effective combining process through the attention mechanism. Experiments show that DAGMIX significantly outperforms previous SOTA methods in large-scale scenarios, as well as achieving promising results on other tasks.
Abstract:The significant advancements in large language models (LLMs) have presented novel opportunities for tackling planning and decision-making within multi-agent systems. However, as the number of agents increases, the issues of hallucination in LLMs and coordination in multi-agent systems (MAS) have become increasingly pronounced. Additionally, the efficient utilization of tokens becomes a critical consideration when employing LLMs to facilitate the interactions of large numbers of agents. In this paper, we present a novel framework aimed at enhancing coordination and decision-making capabilities of LLMs within large-scale multi-agent environments. Our approach draws inspiration from the actor-critic framework employed in multi-agent reinforcement learning, and we develop a modular and token-efficient solution that effectively addresses challenges presented by LLMs and MAS. Through evaluations conducted in experiments involving system resource allocation and robot grid transportation, we demonstrate the considerable advantages afforded by our proposed approach.