Abstract:Critique-guided reinforcement learning (RL) has emerged as a powerful paradigm for training LLM agents by augmenting sparse outcome rewards with natural-language feedback. However, current methods often rely on static or offline critic models, which fail to adapt as the policy evolves. In on-policy RL, the agent's error patterns shift over time, causing stationary critics to become stale and providing feedback of diminishing utility. To address this, we introduce ECHO (Evolving Critic for Hindsight-Guided Optimization)}, a framework that jointly optimizes the policy and critic through a synchronized co-evolutionary loop. ECHO utilizes a cascaded rollout mechanism where the critic generates multiple diagnoses for an initial trajectory, followed by policy refinement to enable group-structured advantage estimation. We address the challenge of learning plateaus via a saturation-aware gain shaping objective, which rewards the critic for inducing incremental improvements in high-performing trajectories. By employing dual-track GRPO updates, ECHO ensures the critic's feedback stays synchronized with the evolving policy. Experimental results show that ECHO yields more stable training and higher long-horizon task success across open-world environments.
Abstract:We present STAgent, an agentic large language model tailored for spatio-temporal understanding, designed to solve complex tasks such as constrained point-of-interest discovery and itinerary planning. STAgent is a specialized model capable of interacting with ten distinct tools within spatio-temporal scenarios, enabling it to explore, verify, and refine intermediate steps during complex reasoning. Notably, STAgent effectively preserves its general capabilities. We empower STAgent with these capabilities through three key contributions: (1) a stable tool environment that supports over ten domain-specific tools, enabling asynchronous rollout and training; (2) a hierarchical data curation framework that identifies high-quality data like a needle in a haystack, curating high-quality queries with a filter ratio of 1:10,000, emphasizing both diversity and difficulty; and (3) a cascaded training recipe that starts with a seed SFT stage acting as a guardian to measure query difficulty, followed by a second SFT stage fine-tuned on queries with high certainty, and an ultimate RL stage that leverages data of low certainty. Initialized with Qwen3-30B-A3B to establish a strong SFT foundation and leverage insights into sample difficulty, STAgent yields promising performance on TravelBench while maintaining its general capabilities across a wide range of general benchmarks, thereby demonstrating the effectiveness of our proposed agentic model.
Abstract:This paper argues that the next generation of AI agent (NGENT) should integrate across-domain abilities to advance toward Artificial General Intelligence (AGI). Although current AI agents are effective in specialized tasks such as robotics, role-playing, and tool-using, they remain confined to narrow domains. We propose that future AI agents should synthesize the strengths of these specialized systems into a unified framework capable of operating across text, vision, robotics, reinforcement learning, emotional intelligence, and beyond. This integration is not only feasible but also essential for achieving the versatility and adaptability that characterize human intelligence. The convergence of technologies across AI domains, coupled with increasing user demand for cross-domain capabilities, suggests that such integration is within reach. Ultimately, the development of these versatile agents is a critical step toward realizing AGI. This paper explores the rationale for this shift, potential pathways for achieving it.
Abstract:Large language models often encounter challenges with static knowledge and hallucinations, which undermine their reliability. Retrieval-augmented generation (RAG) mitigates these issues by incorporating external information. However, user queries frequently contain noise and intent deviations, necessitating query rewriting to improve the relevance of retrieved documents. In this paper, we introduce DMQR-RAG, a Diverse Multi-Query Rewriting framework designed to improve the performance of both document retrieval and final responses in RAG. Specifically, we investigate how queries with varying information quantities can retrieve a diverse array of documents, presenting four rewriting strategies that operate at different levels of information to enhance the performance of baseline approaches. Additionally, we propose an adaptive strategy selection method that minimizes the number of rewrites while optimizing overall performance. Our methods have been rigorously validated through extensive experiments conducted in both academic and industry settings.
Abstract:Transformers have been the cornerstone of current Large Language Models (LLMs); however, its linear growth in overhead during inference with respect to sequence length poses challenges for modeling long sequences. In this context, Mamba has gradually attracted attention due to its constant-level size during inference and existing empirical results have shown that it can perform comparably to Transformers in sequence modeling while offering significant savings. However, one may ask that, can Mamba always enjoy the ``free lunch"? In this paper, we focus on analyzing the expressive ability of Mamba from a theoretical standpoint. First, inspired by the connection between Mamba and linear attention, we investigate potential shortcomings of the Mamba when performing the COPY operation. Our results indicate that Mamba with constant size may encounter bottlenecks when handling COPY, while it can achieve perfect performance when the size scales linearly with sequence length. Based on this observation, we analyze Mamba's ability to tackle DP problems when equipped with Chain of Thought (CoT). Our findings suggest that to solve arbitrary DP problems, the total cost of Mamba is comparable to standard and efficient Transformers. However, similar to efficient Transformers, when facing DP problems with favorable properties such as locality, Mamba can provide savings in overhead. Our results contribute to a deeper understanding of Mamba.




Abstract:It has been observed that machine learning algorithms exhibit biased predictions against certain population groups. To mitigate such bias while achieving comparable accuracy, a promising approach is to introduce surrogate functions of the concerned fairness definition and solve a constrained optimization problem. However, an intriguing issue in previous work is that such fairness surrogate functions may yield unfair results. In this work, in order to deeply understand this issue, taking a widely used fairness definition, demographic parity as an example, we both theoretically and empirically show that there is a surrogate-fairness gap between the fairness definition and the fairness surrogate function. The "gap" directly determines whether a surrogate function is an appropriate substitute for a fairness definition. Also, the theoretical analysis and experimental results about the "gap" motivate us that the unbounded surrogate functions will be affected by the points far from the decision boundary, which is the large margin points issue investigated in this paper. To address it, we propose the general sigmoid surrogate with a rigorous and reliable fairness guarantee. Interestingly, the theory also provides insights into two important issues that deal with the large margin points as well as obtaining a more balanced dataset are beneficial to fairness. Furthermore, we elaborate a novel and general algorithm called Balanced Surrogate, which iteratively reduces the "gap" to improve fairness. Finally, we provide empirical evidence showing that our methods achieve better fairness performance in three real-world datasets.