Abstract:This paper investigates an under-explored challenge in large language models (LLMs): chain-of-thought prompting with noisy rationales, which include irrelevant or inaccurate reasoning thoughts within examples used for in-context learning. We construct NoRa dataset that is tailored to evaluate the robustness of reasoning in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent vulnerability to such noise among current LLMs, with existing robust methods like self-correction and self-consistency showing limited efficacy. Notably, compared to prompting with clean rationales, base LLM drops by 1.4%-19.8% in accuracy with irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts. Addressing this challenge necessitates external supervision that should be accessible in practice. Here, we propose the method of contrastive denoising with noisy chain-of-thought (CD-CoT). It enhances LLMs' denoising-reasoning capabilities by contrasting noisy rationales with only one clean rationale, which can be the minimal requirement for denoising-purpose prompting. This method follows a principle of exploration and exploitation: (1) rephrasing and selecting rationales in the input space to achieve explicit denoising and (2) exploring diverse reasoning paths and voting on answers in the output space. Empirically, CD-CoT demonstrates an average improvement of 17.8% in accuracy over the base model and shows significantly stronger denoising capabilities than baseline methods. The source code is publicly available at: https://github.com/tmlr-group/NoisyRationales.
Abstract:In cross-domain few-shot classification (CFC), recent works mainly focus on adapting a simple transformation head on top of a frozen pre-trained backbone with few labeled data to project embeddings into a task-specific metric space where classification can be performed by measuring similarities between image instance and prototype representations. Technically, an assumption implicitly adopted in such a framework is that the prototype and image instance embeddings share the same representation transformation. However, in this paper, we find that there naturally exists a gap, which resembles the modality gap, between the prototype and image instance embeddings extracted from the frozen pre-trained backbone, and simply applying the same transformation during the adaptation phase constrains exploring the optimal representations and shrinks the gap between prototype and image representations. To solve this problem, we propose a simple yet effective method, contrastive prototype-image adaptation (CoPA), to adapt different transformations respectively for prototypes and images similarly to CLIP by treating prototypes as text prompts. Extensive experiments on Meta-Dataset demonstrate that CoPA achieves the state-of-the-art performance more efficiently. Meanwhile, further analyses also indicate that CoPA can learn better representation clusters, enlarge the gap, and achieve minimal validation loss at the enlarged gap.
Abstract:Detecting out-of-distribution (OOD) samples is essential when deploying machine learning models in open-world scenarios. Zero-shot OOD detection, requiring no training on in-distribution (ID) data, has been possible with the advent of vision-language models like CLIP. Existing methods build a text-based classifier with only closed-set labels. However, this largely restricts the inherent capability of CLIP to recognize samples from large and open label space. In this paper, we propose to tackle this constraint by leveraging the expert knowledge and reasoning capability of large language models (LLM) to Envision potential Outlier Exposure, termed EOE, without access to any actual OOD data. Owing to better adaptation to open-world scenarios, EOE can be generalized to different tasks, including far, near, and fine-grained OOD detection. Technically, we design (1) LLM prompts based on visual similarity to generate potential outlier class labels specialized for OOD detection, as well as (2) a new score function based on potential outlier penalty to distinguish hard OOD samples effectively. Empirically, EOE achieves state-of-the-art performance across different OOD tasks and can be effectively scaled to the ImageNet-1K dataset. The code is publicly available at: https://github.com/tmlr-group/EOE.
Abstract:To deduce new facts on a knowledge graph (KG), a link predictor learns from the graph structure and collects local evidence to find the answer to a given query. However, existing methods suffer from a severe scalability problem due to the utilization of the whole KG for prediction, which hinders their promise on large scale KGs and cannot be directly addressed by vanilla sampling methods. In this work, we propose the one-shot-subgraph link prediction to achieve efficient and adaptive prediction. The design principle is that, instead of directly acting on the whole KG, the prediction procedure is decoupled into two steps, i.e., (i) extracting only one subgraph according to the query and (ii) predicting on this single, query dependent subgraph. We reveal that the non-parametric and computation-efficient heuristics Personalized PageRank (PPR) can effectively identify the potential answers and supporting evidence. With efficient subgraph-based prediction, we further introduce the automated searching of the optimal configurations in both data and model spaces. Empirically, we achieve promoted efficiency and leading performances on five large-scale benchmarks. The code is publicly available at: https://github.com/tmlr-group/one-shot-subgraph.
Abstract:Despite remarkable success in various applications, large language models (LLMs) are vulnerable to adversarial jailbreaks that make the safety guardrails void. However, previous studies for jailbreaks usually resort to brute-force optimization or extrapolations of a high computation cost, which might not be practical or effective. In this paper, inspired by the Milgram experiment that individuals can harm another person if they are told to do so by an authoritative figure, we disclose a lightweight method, termed as DeepInception, which can easily hypnotize LLM to be a jailbreaker and unlock its misusing risks. Specifically, DeepInception leverages the personification ability of LLM to construct a novel nested scene to behave, which realizes an adaptive way to escape the usage control in a normal scenario and provides the possibility for further direct jailbreaks. Empirically, we conduct comprehensive experiments to show its efficacy. Our DeepInception can achieve competitive jailbreak success rates with previous counterparts and realize a continuous jailbreak in subsequent interactions, which reveals the critical weakness of self-losing on both open/closed-source LLMs like Falcon, Vicuna, Llama-2, and GPT-3.5/4/4V. Our investigation appeals that people should pay more attention to the safety aspects of LLMs and a stronger defense against their misuse risks. The code is publicly available at: https://github.com/tmlr-group/DeepInception.
Abstract:Graph Neural Networks (GNNs) have been widely adopted for drug discovery with molecular graphs. Nevertheless, current GNNs are mainly good at leveraging short-range interactions (SRI) but struggle to capture long-range interactions (LRI), both of which are crucial for determining molecular properties. To tackle this issue, we propose a method that implicitly projects all original atoms into a few Neural Atoms, which abstracts the collective information of atomic groups within a molecule. Specifically, we explicitly exchange the information among neural atoms and project them back to the atoms' representations as an enhancement. With this mechanism, neural atoms establish the communication channels among distant nodes, effectively reducing the interaction scope of arbitrary node pairs into a single hop. To provide an inspection of our method from a physical perspective, we reveal its connection with the traditional LRI calculation method, Ewald Summation. We conduct extensive experiments on three long-range graph benchmarks, covering both graph-level and link-level tasks on molecular graphs. We empirically justify that our method can be equipped with an arbitrary GNN and help to capture LRI.
Abstract:Although link prediction on graphs has achieved great success with the development of graph neural networks (GNNs), the potential robustness under the edge noise is still less investigated. To close this gap, we first conduct an empirical study to disclose that the edge noise bilaterally perturbs both input topology and target label, yielding severe performance degradation and representation collapse. To address this dilemma, we propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse. Different from the basic information bottleneck, RGIB further decouples and balances the mutual dependence among graph topology, target labels, and representation, building new learning objectives for robust representation against the bilateral noise. Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies, i.e., self-supervised learning and data reparameterization, for implicit and explicit data denoising, respectively. Extensive experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations. The code is publicly available at: https://github.com/tmlr-group/RGIB.
Abstract:It has been observed that machine learning algorithms exhibit biased predictions against certain population groups. To mitigate such bias while achieving comparable accuracy, a promising approach is to introduce surrogate functions of the concerned fairness definition and solve a constrained optimization problem. However, an intriguing issue in previous work is that such fairness surrogate functions may yield unfair results. In this work, in order to deeply understand this issue, taking a widely used fairness definition, demographic parity as an example, we both theoretically and empirically show that there is a surrogate-fairness gap between the fairness definition and the fairness surrogate function. The "gap" directly determines whether a surrogate function is an appropriate substitute for a fairness definition. Also, the theoretical analysis and experimental results about the "gap" motivate us that the unbounded surrogate functions will be affected by the points far from the decision boundary, which is the large margin points issue investigated in this paper. To address it, we propose the general sigmoid surrogate with a rigorous and reliable fairness guarantee. Interestingly, the theory also provides insights into two important issues that deal with the large margin points as well as obtaining a more balanced dataset are beneficial to fairness. Furthermore, we elaborate a novel and general algorithm called Balanced Surrogate, which iteratively reduces the "gap" to improve fairness. Finally, we provide empirical evidence showing that our methods achieve better fairness performance in three real-world datasets.
Abstract:Although powerful graph neural networks (GNNs) have boosted numerous real-world applications, the potential privacy risk is still underexplored. To close this gap, we perform the first comprehensive study of graph reconstruction attack that aims to reconstruct the adjacency of nodes. We show that a range of factors in GNNs can lead to the surprising leakage of private links. Especially by taking GNNs as a Markov chain and attacking GNNs via a flexible chain approximation, we systematically explore the underneath principles of graph reconstruction attack, and propose two information theory-guided mechanisms: (1) the chain-based attack method with adaptive designs for extracting more private information; (2) the chain-based defense method that sharply reduces the attack fidelity with moderate accuracy loss. Such two objectives disclose a critical belief that to recover better in attack, you must extract more multi-aspect knowledge from the trained GNN; while to learn safer for defense, you must forget more link-sensitive information in training GNNs. Empirically, we achieve state-of-the-art results on six datasets and three common GNNs. The code is publicly available at: https://github.com/tmlr-group/MC-GRA.
Abstract:Due to the success of Graph Neural Networks (GNNs) in learning from graph-structured data, various GNN-based methods have been introduced to learn from knowledge graphs (KGs). In this paper, to reveal the key factors underneath existing GNN-based methods, we revisit exemplar works from the lens of the propagation path. We find that the answer entity can be close to queried one, but the information dependency can be long. Thus, better reasoning performance can be obtained by exploring longer propagation paths. However, identifying such a long-range dependency in KG is hard since the number of involved entities grows exponentially. This motivates us to learn an adaptive propagation path that filters out irrelevant entities while preserving promising targets during the propagation. First, we design an incremental sampling mechanism where the close and promising target can be preserved. Second, we design a learning-based sampling distribution to identify the targets with fewer involved entities. In this way, GNN can go deeper to capture long-range information. Extensive experiments show that our method is efficient and achieves state-of-the-art performances in both transductive and inductive reasoning settings, benefiting from the deeper propagation.